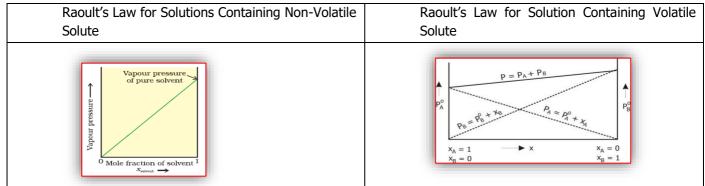
SOLUTION (GIST POINTS)

Mass of solute present per 100 g. of solution

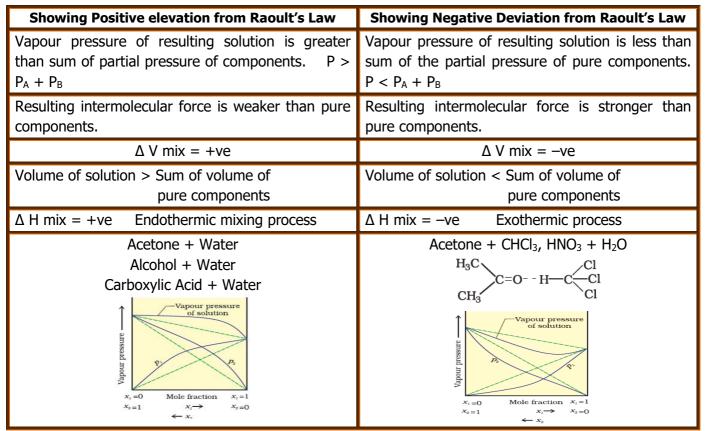
Concentration of Solutions:-

w/w% Composition:


	$w/w^{0/0}$ Composition = $\frac{w \text{ Solute}}{w \text{ Solution}} \times 100$
Molarity [M]:	No. of moles of solute present per liter of solution in called 'molarity of solution' It is temperature dependent. M= No. of Moles of solute / Volume of solution in litre
Molality [m]:	No. of moles of solute present per kg. of solvent is called molality. It is temperature independent. m= No. of Moles of solute / Mass of Solvent in Kg
Normality[N]:	No. of gram equivalent of solute present per liter of solution is called normality of solution.
	N = No. of gm equivalent of solute / Volume of solution in litre
Parts Per Million [ppm]:	It is used for very dilute solutions, Parts of solute in per million parts of solution are called ppm. Ppm = Part of solute $x10^6$ / Part of solution
Mole Fraction:	Ratio of moles of components to total no. of moles of all the components of solution is called mole fraction (x) of the component.

Henry's law :- "The partial pressure of the gas in vapour phase *p* is proportional to the mole fraction of the gas *x* in the solution." $\mathbf{P} = \mathbf{K}_{H} \mathbf{x}$

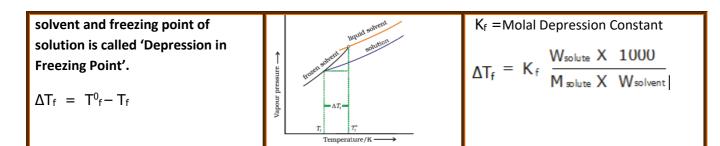
Applications of Henery Law(1) In Packing of soda/ Soft drinks(2) In Deep see diving(He = 11.7 %, N₂ = 56.2 % and O₂ = 32.1%) (3) Functions of lungs (4)At high altitudes pressure is low there for breathing problems lead to ANOXIA (unable to think and weak)


Vapour Pressure: The pressure exerted by vapours over the liquid surface at equilibrium is called *vapour pressure* of the liquid.

Raoult's Law:"The V.P. of any volatile component in the solution is directly proportional to its mole fraction".

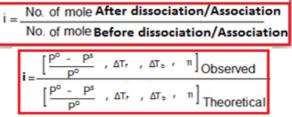
Ideal and Non-Ideal Solutions:

Ideal Solution	Non Ideal Solution
Follows Raoult's law at all temperature and concentrations. $P = P_A + P_B$	Does not follow Raoult's law at all temperature and pressure. $P \neq P_A + P_B$
Intermolecular forces in resulting solution are same as in pure components. A - B = A - A = B - B	Intermolecular forces in resulting solution are different from the inter molecular force of pure components.A – B \neq A – A, B – B
No change in volume while mixing components. $\Delta V \text{ mix} = 0$	Change in volume while mixing components. $\Delta V \text{ mix} \neq 0$
No heat change take place while mixing the components. Δ H mix = 0	Heat changes take place while mixing the components. Δ H mix \neq 0
Eg: n – hexane + n – heptanes & benzene + toluene	Eg: Acetone + Water & Acetone + CHCl ₃
Non Ideal Solution	


Azeothrpes: (Constant Boiling Mixture) :-Solution in which components are present in a fixed proportion, boils at a constant temperature irrespective of boiling point of pure components

• Minimum Boiling Azeothrpes: Boils at a temperature lower than b.ps. of pure components. [95% Alcohol]

• Maximum Boiling Azeothrpes: Boils at a temperature higher than b.p.s. of pure components. [68% HNO₃]


Colligative Properties:- The properties of dilute solutions which depend only on number particles of solute present in the solution and not on their identity are called *colligative properties*

1-Relative Lowering of Vapour Pressure $\frac{p_1^0 - p_1}{p_1^0} = \frac{w_2 \times M_1}{M_2 \times w_1}$		The relative lowering of vapour pressure of a solution containing a non-volatile solute is equal to the mole fraction of the solute present in the solution.		
2-Osmosis and Osmotic Pressure Diffusion:-Movement of solute part from higher cone to lower cone. E.g. Incense stick Osmotic Pressure: Excess pressure must be applied to a solution in ord prevent flow of solvent into the solut through the semi-permeable memb π V = nRT π = Osmotic pressure =Gas constant	which der to ution orane.	from a region of lower of its higher concentration membrane. Reverse Osmosis: If applied then, flow of s higher concentration s This phenomenon is o	omenon of the passage of pure solven r concentration (of the solution) to a region ation through a semi-permeable f pressure greater than osmotic pressure is solvent molecules is reversed, i.e. from a solution to lower concentrated solution. called "Reverse Osmosis". It is used in nd desalination of water.	
3- Elevation of Boiling Point : Difference between boiling of solution containing non volatile solute and B.P. of pure solvent is called elevation of B.P. $\Delta T_b = T_b - T^o b$	1 Atm ↑ annssaud modeA	Boiling point of Solvent Solution Solution Solution T_{s} Temperature/K \longrightarrow	$\Delta T_{b} \propto m \text{ [molality]}$ $\Delta T_{b} = K_{b} m$ $K_{b} = \text{Molal ElevationConstant}$ $\Delta T_{b} = K_{b} \frac{W_{\text{solute }} X \text{ 1000}}{M_{\text{solute }} X W_{\text{solvent}}}$	
4-Depression of Freezing Point Difference in freezing point of pure			$\Delta T_{f^{\infty}}$ m [molality] ΔT_{f} = K _f m	

Van't Hoff Factor:

 $i = \frac{\text{Observed colligative property (actual)}}{\text{Theoretica I colligative property (expected)}}$ $= \frac{\text{No. of molecules actually present}}{\text{No. of molecules expected to be present}}$

Association	Dimerisa tion	Trimerisatio n	Tetrameris ation	pentamerisati on
i =	1/2	1/3	1/4	1/5
dissociation	NaCl	MgCl ₂	AlCl₃	K₄ [Fe(CN) ₆]
i =	2	3	4	5

UNIT-3 ELECTROCHEMISTRY

SNO.	Terminology
1.	<u>Conductance</u> : Reciprocal of the resistance $G = \frac{1}{R}$ Unit is Ω^{-1}
2	Specific Resistance/Resistivity : ρ= R A /l Unit is ohm-cm
3	Specific Conductance or Conductivity : k= 1/p = I/ RA
4	Conductivity of any conductor is the reciprocal of specific resistance and is denoted by κ (Greek work Kappa) unit Scm ⁻¹ Molar Conductivity: It is defined as the conducting power of all the ions produced by one gram mol of an electrolyte in a solution. It is denoted by \wedge_m unit Scm ² mol ⁻¹ . $\kappa \times 1000$
	$\Lambda_{\rm m} = \frac{\kappa \times 1000}{\rm Molarity}$
5	Variation of molar conductivity with concentration For strong electrolytes λ decreases slightly with increase in concentration due to increase in number of ions per unit volume.e.g KCl For weak electrolytes it increases sharply with decrease in concentration as ionization of weak electrolytes increases on dilution e.g CH ₃ COOH
6	Kohlrausch's Law : According to this law, molar conductivity of an electrolyte, at infinite dilution can be expressed as the sum of contributions from its individual ions e.g. $\wedge^{\circ} \operatorname{CaCl}_{2} = \lambda^{\circ}(\operatorname{Ca}^{2+}) + 2\lambda^{\circ}(\operatorname{Cl}^{-})$ $\wedge^{\circ}_{AI_{2}(SO_{4})_{3}} = 2\lambda_{AI^{+3}} + 3\lambda_{SO_{4}^{-2}}^{\circ}$ Application ofKohlrausch's Law 1. For calculation of limiting molar conductivity $\lambda^{\circ} = \lambda^{c/} \lambda_{m}$ 2. For calculation of degree of dissociation $\alpha = \frac{\Lambda}{\Lambda^{\circ}}$ 3. For calculation of dissociation constant. $K_{a} = \frac{c\alpha^{2}}{(1-\alpha)} = \frac{c\Lambda^{2}}{\Lambda^{\circ}(\Lambda^{\circ} - \Lambda)}$
7	Faraday – First law of electrolysis The amount of substance deposited during electrolysis is directly proportional to quantity of electricity passed. Faraday – Second Law The amount of different substances

	$W = zit$ and $z = \frac{m}{nF}$ therefore $w = \frac{m \times i \times t}{nF}$	weights $\frac{w1}{w2} = \frac{E1}{E2}$
8	Nernst equation	<u>Equilibrium constant</u> $\mathbf{K}_{\mathbf{c}}$ At equilibrium $\mathbf{Q} = \mathbf{K}_{\mathbf{c}}$ and \mathbf{E}_{cell} = 0
	$Ecell = E^{o}cell - \frac{0.059}{n} \log \frac{[product]}{[react.]}$	$E^{\circ}cell = \frac{0.059}{n}\log Kc$
9.	Electrochemical Cell and Gibbs energy of the reaction	Concentration Cell : A cell in which both electrodes are of
	$\Delta_{\rm r}G = -nFE$	the same type but the solution of electrolyte in which they
	$\Delta_{\rm r} {\rm G}^{\circ} = -{\rm n} {\rm F} {\rm E}^{\circ}$ $\Delta_{\rm r} {\rm G}^{\circ} = -2.303 RT \log K_{\rm c}$	dip have different concentration is concentration cell. Cu /Cu ²⁺ (C ₁)//Cu ²⁺ (C ₂)/Cu
	$\Delta_r G^o = -2.303 RT \log K_c$	
		$E_{cell} = \frac{2.303RT}{2F} \log \frac{C_2}{C_1}$

Products	of electro	Diysis

NaCl (molten)	Cathode : $Na^+(I) + e^- \rightarrow Na(s)$	Anode : $CI^- \rightarrow \frac{1}{2}CI_2 + e^-$
NaCl (aq)	Cathode : $H_2O(I) + e^- \rightarrow \frac{1}{2}H_2(g) + OH^-$	Anode : $CI^{-} \rightarrow \frac{1}{2}CI_2 + e^{-}$
H ₂ SO ₄ (dil)	Cathode : $H^+ + e^- \rightarrow \frac{1}{2} H_2$	Anode: $2H_2O(I) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$
H ₂ SO ₄ (conc)	Cathode : $H^+ + e^- \rightarrow \frac{1}{2} H_2$	Anode: $2SO_4^{2-}$ (aq) $\rightarrow S_2O_8^{2-}$ (aq) + $2e^-$
AgNO ₃ (aq)-Ag electrodes	Cathode : $Ag^+(aq) + e^- \rightarrow Ag(s)$	Anode: Ag(s) \rightarrow Ag ⁺ (aq) + e ⁻
AgNO ₃ (aq)- Pt electrodes	Cathode : $Ag^+(aq) + e^- \rightarrow Ag(s)$	Anode: $2H_2O(I) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$
CuCl(aq)- Pt electrodes	Cathode : Cu ⁺ (aq) + e^{-} Cu(s)	Anode: $2H_2O(I) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$

	Elec	trochemical C	ell Electrolytic	Cell	
	 It is device to convert chemical energy to electrical energy It is based upon redox reaction which is spontaneous. 		2. The redox reaction is non-spo	 It is device to convert electrical energy into chemical energy The redox reaction is non-spontaneous and takes place on when electrical energy is supplied. 	
SN	Name of cell	Electrolyte	Chemical Reaction	Remark	
0.	Mercury Cell	Paste of KOH & Zn(OH)2	Anode:- zinc-mercury amalgam $Zn(Hg) + 2OH^- \rightarrow ZnO(s) + H_2O + 2e^-$ Cathode:- HgO and carbon $HgO + H_2O + 2e^- \rightarrow Hg(1) + 2OH^-$ Overall reaction:- Zn(Hg) + HgO \rightarrow ZnO + H ₂	Provide constant voltage and does not corroded due to absence of ion in overall reaction. Voltage 1.35V	
2	Dry Cell :	ZnCl₂ and NH₄Cl	Anode :- Zinc rod Zn(s) \rightarrow Zn ²⁺ +2e ⁻ Cathode:-Carbon rod surrounded by MnO ₂ 2MnO ₂ + 2NH ₄ ⁺ + 2e ⁻ \rightarrow Mn ₂ O ₃ +2NH ₃ Overall Reaction:- Zn + 2MnO ₂ + 2NH ₄ ⁺ \rightarrow Zn ²⁺ + Mn ₂ O ₃ + 2 NH ₃	Corroded due to the presence of ion in overall reaction. ZnCl ₂ is used to make a complex [Zn(NH ₃) ₂ Cl ₂] it saves the bursting of cell, Voltage 1.5V	
3	Lead Storage (Secondary Batteries) :	38% H₂SO₄	Anode:- Pb grid $PbSO_4(s) + 2e^- \rightarrow Pb(s) + SO_4^{2-}(aq)$ Cathode:-Pb grid filled with PbO ₂ PbO _{2(s)} + SO ₄ ²⁻ + 4H ⁺ (aq) + 2e ⁻ \rightarrow PbSO _{4(s)} + 2H ₂ O(1) Overall Cell Reaction:- $Pb(s) + PbO_2(s) + 2H_2SO_4 \rightarrow 2PbSO_4(s) + 2H_2O(1)$	Can be Recharged by reversing the electrodes Reactant become products and products become reactants	
4	Fuel Cell :	KOH solution	Anode :- $2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$ Cathode :- $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$ Overall Reaction:- $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$	Eco friendly, Efficiency 60-70%	
5.	Corrosion	H ₂ CO ₃	Anode (oxidation) :- $Fe(s) + Fe^{2+}(aq) + 2e^{-}$ Cathode (Reduction) :- $O_2(g) + 4H^+(ag) + 4e^{-} \rightarrow 2H_2O(l)$	Formula of rust Fe ₂ O _{3.} x H ₂ O	

			Atmospheric Oxidation:- $2Fe^{2+}_{(aq)} + 2H_2O_{(I)} + 1/2O_2 \longrightarrow Fe_2O_{3(s)} + 4H^+_{(aq)}$	
Pre	evention of Corrosion	metals	ering the surface with paint or by some chemicals (e.g. bispheno (Sn, Zn, etc.) that are inert or react to save the object. An electro de like Mg, Zn, etc.) which corrodes itself but saves the object.	

	CHAPTER-4 CHE	MICAL KINETICS
RATE OF		ither reactant or product per unit time.
REACTION	Example : $N_2 + 3H_2 - \rightarrow 2NH_3$	
	Rate of reaction = + $\frac{1}{2} \frac{d(NH_3)}{dt} = - \frac{d(I)}{dt}$	$\frac{N_2}{dt} = -\frac{1}{3} \frac{d(H_2)}{dt}$
Unit of rate	Mol L ⁻¹ time ⁻¹ or mol L ⁻¹ S ⁻¹	
Rate Law		n in term of concentration of reactant
Rate		f reaction when concentration are taken as
Constant	unity Rate= $K[A]^{\times}[B]^{\vee}[A]=1$ [B	3]=1 Rate=K
Unit of rate constatnt	Unit of $\mathbf{k} = \left[\frac{\text{mol}}{L}\right]^{1-n} \times \text{time}^{-1}$ For gase	cous reaction unit of k may be = $(atm)^{1-n} \times time^{-1}$
	N - Order of reaction	
Order of	•	n of reactant in rate law expression
reaction	$aA + bB \rightarrow Product Rate=K[A]^{\times}[$	
Mechanism		ive or fraction.It is experimental quantity. I reaction complete in single step and have
of Reaction		equal to their stochiometric cofficient.Zero
	order reaction can not be an elem	•
	Complex Reaction:- For the cor	mplex reaction, The overall reaction is controlled
	by the slowest step.	
		f reaction depends on concentration of reactant
	of slowest step which must be fre	
	(i)Thermal decomposition of N ₂ O ₅	(ii) Reaction of NO ₂ and F ₂
	$2N_2O_5 \rightarrow 4 NO_2 + O_2$	$2NO_2 + F_2 \rightarrow 2NO_2F$
	Step(i) $N_2O_5 \xrightarrow{slow} NO_2 + NO_3$	$\mathbf{Step(i)} \ \mathbf{NO}_2 + \mathbf{F}_2 \xrightarrow{slow} \mathbf{NO}_2 \mathbf{F} + \mathbf{F}$
	Step(ii) N ₂ O ₅ + NO ₃ \longrightarrow 3NO ₂ + O ₂	Step(ii) NO ₂ + F \xrightarrow{fast} NO ₂ F
Difference	Order of Reaction	Molecularity
<mark>between</mark>	> 1.The sum of the exponents	1.The no. atoms , ions or molecule that
Order of	(powers) by which the	must collide with one another
Reaction and	concentration terms are raised in	,
Molecularity	 rate law. > 2.Determined Experimently by 	take place > 2.Theoritical concept ,determined by
	rate law	slowest step
	3.May be Zero and negetive	3.Never be Zero and negetive
	4.May be Fraction	4.Neverbe Fraction
<u>Pseudo first</u> order	A chemical reaction which seems order	to be higher order but actually they are of first
<u>reaction</u>	-	ction is one but molecularity is more than one
	Example :- <u>Hydrolysis of ester ir</u>	
	$CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COC$	$OH + C_2H_5OH$
	Rate =K[CH ₃ COOC ₂ H ₅][H ₂ O]	
	When water is in excess then K'[
		$\frac{\text{medium}}{\text{Mean water is in evenes then } K_{12}^{\prime}O_6 + C_6H_{12}O_6$
METHOD OF	Rate = $K[C_{12}H_{22}O_{11}][H_2O]$ N Initial Rate Method:	When water is in excess then $K'[C_{12}H_{22}O_{11}]$
METHOD OF		ent rates at different concentrations, thus we calculate the
DETERMINING ORDER OF	0	r of reaction. Example: Reaction $A + B \rightarrow$ Product
REACTION		According to rate law
	S.No. Conc.of Rate	Rate ₁ = $k(x_1)^m (y_1)^n$ (i)
	A B	$Rate_2 = k(x_2)^m (y_2)^n$ (ii)
	1. x ₁ y ₁ f ₁	$Rate_3 = k(x_3)^m (y_3)^n$ (iii)
		Iere we have three unknown quantities k, m, n and we have three
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	uations thus the solution is possible and k, m, n have unique value, Thus order of reaction = m + n
		a for the reaction $A + B =$ Products and Determine the
	order of the reaction with respect to	A and w.r.t. B and the overall order of the reaction.

	Also calculate rate cons	tant		
			(D) Initial rate (mg	N 1 - 1c-1)
	Exp. Initial cor			
	1 0.10 M	1.00 M	2.1 x 10 ⁻³	
	2 0.20 M	1.00 M	8.4 x 10 ⁻³	
	3 0.20 M ANSWER:	2.00 M	8.4 x 10 ⁻³	
	Exp. Rate = $K [A]^{\times} [B]$	у		Eq.(i)/(ii) Then(1/2) [×] =
		$(1.00)^{\gamma} = 2.1 \times 10^{-3}$.	(i)	(1/4)
			.,	Therefore x = 2
		$(1.00)^{\gamma} = 8.4 \times 10^{-3}$.		$Eq.(ii)/(iii)$ Then $(1/2)^{y} = (1)$
		$(2.00)^{\gamma} = 8.4 \times 10^{-3}$.		Therefore y = 0
		law=K[A] ² [B] ⁰		
Differential			is directly propor	tional to one power of
and	concentration of read			
Integrated	Zero Order Reactions:		First Order Reaction	
Rate Laws:	Rate of reaction = $A \rightarrow Proc$		Rate of reaction = K	$[reactant]^{+}$
	-d[A]/dt =			\mathbf{A} //dt = $\mathbf{K}_1 [\mathbf{A}]^1$
	-d[A] =		-	$[A]/[A] = K_1 dt$
	On integrating			egrating both side
	$\int -d[A] =$	∫ K dt	_	$A]/[A] = \int K 1 dt$
	$-[A] = K_0 t +$	•	-	-
	(Where C= integra		-	$J = K_1 t + C(i)$
	At $t = 0$ [A] = [A ₀]		•	integrating constant)
	Putting the value of			= $[A_0]$ then C =- $\ln[A_0]$
	$[A] = K_0 t$		-	alue of C in equation (i)
	$Or K_0 t =$		-	$\mathbf{A} = \mathbf{K}_1 \mathbf{t} - \ln[\mathbf{A}_0]$
	$[A] = -K_0t + [A_0] that$			$= \ln[A_0] - \ln[A]$
	$[A]_0 - [A]_t = k_0 t$			n[A ₀] that is Y = -mx + C 303/ t)log ([A] ₀ / [A])
	Where,[A]₀₌ Initial conc	entration of A	Where, $[A]_{0=}$ Initial co	
			V $(\Lambda_{0}) = 1$ (Λ_{0})	
			[A]- Concontration	of A at time t
	[A]=Concentration of A	at time t.	[A]= Concentration of	
		at time t.		of A at time t. for First order reaction.
	[A]=Concentration of A	at time t.		for First order reaction.
	[A]=Concentration of A	at time t.		
	[A]=Concentration of A k _o = Rate constant for z	A at time t. tero order reaction. Slope = -K ₀	$K_{1} = \text{Rate constant}$	for First order reaction.
	[A]=Concentration of A k _o = Rate constant for z	A at time t. tero order reaction.		for First order reaction.
	[A]=Concentration of A k _o = Rate constant for z	A at time t. tero order reaction. Slope = -K ₀	$K_{1} = \text{Rate constant}$	for First order reaction.
	[A]=Concentration of A k _o = Rate constant for z	A at time t. tero order reaction.	$K_{1} = \text{Rate constant}$	for First order reaction.
	[A]=Concentration of A k_0 = Rate constant for z	A at time t. tero order reaction.	K_1 = Rate constant f $[V]_{B_1}$.Units of k ₁ = s ⁻¹ EXAI	for First order reaction. slope = - $k/2.303$ t \rightarrow WPLES
	[A]=Concentration of A k_0 = Rate constant for z k_0 k_0 = Rate constant for z k_0 k_0 = Rate constant for z k_0 k_0 = Rate constant for z	A at time t. tero order reaction.	K ₁ = Rate constant	for First order reaction. slope = - $k/2.303$ t \rightarrow WPLES
	[A]=Concentration of A k_0 = Rate constant for z	A at time t. tero order reaction.	$K_{1} = \text{Rate constant f}$ $\downarrow_{\substack{\{V_{1}\}\\ V_{2}\\ V_{3}\\ V_{4}\\ V_{4}\\ V_{4}\\ V_{4}\\ V_{5}\\ V_{4}\\ V_{4}\\ V_{5}\\ V_{4}\\ V_{5}\\ V_{4}\\ V_{4}\\ V_{5}\\ V_{5}\\ V_{4}\\ V_{5}\\ V_{5}\\ V_{4}\\ V_{5}\\ V_{5}\\ V_{4}\\ V_{5}\\ V_{5}\\$	for First order reaction. slope = - $k/2.303$ t \rightarrow WPLES
	[A]=Concentration of A k_0 = Rate constant for z k_0 k_0 = Rate constant for z k_0 k_0 = Rate constant for z k_0 k_0 = Rate constant for z	A at time t. tero order reaction.	$K_{1} = \text{Rate constant f}$ $\downarrow_{I} = I_{1} = I_{1} = I_{1} = I_{2} =$	for First order reaction. slope = - $k^{2.303}$ $t \longrightarrow$ WPLES $+\frac{1}{2}O_2$
	[A]=Concentration of A k_0 = Rate constant for z $\downarrow_{t \to t}$ Unit of rate constant = mo Examples:	A at time t. tero order reaction.	$K_{1} = \text{Rate constant f}$ $\downarrow_{I} = I_{1} = I_{1} = I_{1} = I_{2} =$	for First order reaction. slope = -k/2.303 $t \longrightarrow$ MPLES $t^{1/2}O_2$ $O \longrightarrow CH_3COOCH + CH_3OH$ acid $\rightarrow Ce_{6}H_{12}O_{6} + C_{6}H_{12}O_{6}$
	[A]=Concentration of A k_0 = Rate constant for z k_0 = Rate constant for z Unit of rate constant = mo Examples: • Enzyme reactions Decomposition	at time t. tero order reaction. $ \int_{A_{1}} \int_{A_{2}} \int_{I_{A_{2}}} \int_{I_{A_{3}}} \int$	$K_{1} = \text{Rate constant f}$ $K_{1} = \text{Rate constant f}$ $\downarrow \qquad \downarrow \qquad$	for First order reaction. slope = -k/2.303 $t \longrightarrow$ WPLES $+\frac{1}{2}O_2$ $O \longrightarrow CH_3COOCH + CH_3OH$ $acid \longrightarrow CH_3COOCH + CH_3OH$ $acid \longrightarrow C_6H_12O_6 + C_6H_{12}O_6$ $a + 2H_2O$ $\longrightarrow C_6H_5OH + N_2 + HCI$
	[A]=Concentration of A k_0 = Rate constant for z k_0 = Rate constant for z Unit of rate constant = monomorphic Examples: • Enzyme reactions Decomposing surface of metal	A at time t. tero order reaction. $\int_{[A_0]} \int_{t_{}}^{slope = -K_0} $	$K_{1} = \text{Rate constant f}$ $K_{1} = \text{Rate constant f}$ $\downarrow \qquad \downarrow \qquad$	for First order reaction. slope = -k/2.303 $t \longrightarrow$ MPLES $t^{1/2}O_2$ $O \xrightarrow{acid} CH_3COOCH + CH_3OH$ $acid \rightarrow Cf_6H_{12}O_6 + C_6H_{12}O_6$ $t \rightarrow 2H_2O$
	[A]=Concentration of A k_0 = Rate constant for z k_0 = Rate constant for z Unit of rate constant = mo Examples: • Enzyme reactions Decomposition	A at time t. tero order reaction. $\int_{[A_0]} \int_{t_{}}^{slope = -K_0} $	$K_{1} = \text{Rate constant f}$ $K_{1} = \text{Rate constant f}$ $\downarrow \qquad \downarrow \qquad$	for First order reaction. slope = -k/2.303 $t \longrightarrow t$ MPLES $+\frac{1}{2}O_2$ $O \xrightarrow{acid} CH_3COOCH + CH_3OH}$ $acid \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$ $t \xrightarrow{BC}6H_5OH + N_2 + HCl$ $O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$
	[A]=Concentration of A k_0 = Rate constant for z k_0 = Rate constant for z Unit of rate constant = monomorphic Examples: • Enzyme reactions Decomposing surface of metal	A at time t. tero order reaction. $\int_{[A_0]} \int_{t_{}}^{slope = -K_0} $	$K_{1} = \text{Rate constant f}$ $K_{1} = \text{Rate constant f}$ $\downarrow \qquad \downarrow \qquad$	for First order reaction. slope = -k/2.303 $t \longrightarrow$ WPLES $+\frac{1}{2}O_2$ $O \longrightarrow CH_3COOCH + CH_3OH$ $acid \rightarrow CH_3COOCH + CH_3OH$ $acid \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$ $a + 2H_2O$ $\rightarrow C_6H_5OH + N_2 + HCl$ $D \longrightarrow CH_3COOH + C_2H_5OH$ P(s) + 3H_2(g)
Half Life	[A]=Concentration of A k_0 = Rate constant for z k_0 = Rate constant for z Unit of rate constant = mo Examples: • Enzyme reactions Decomposi surface of metal decomposition of HI	at time t. tero order reaction. $\int_{A_{1}} \int_{I_{A_{2}}} \int_{I_{A_{3}}} \int_{I_{A_{3}}$	$K_{1} = \text{Rate constant f}$ $K_{1} = \text{Rate constant f}$ $\downarrow \qquad \downarrow \qquad$	for First order reaction. slope = -k/2.303 $t \longrightarrow$ WPLES $+\frac{1}{2}O_2$ $O \longrightarrow CH_3COOCH + CH_3OH$ $acid \rightarrow CH_3COOCH + CH_3OH$ $acid \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$ $t_2 + 2H_2O$ $\rightarrow C_6H_5OH + N_2 + HCl$ $D \longrightarrow CH_3COOH + C_2H_5OH$ $P(s) + 3H_2(g)$ $D_2 + 1/2O_2$
Half Life	[A]=Concentration of A k_0 = Rate constant for z k_0 = Rate constant for z Unit of rate constant = monomorphic Unit of rate constant = monomorphic Examples: • Enzyme reactions Decomposition of HI decomposition of HI Half Life: Time required	A at time t. tero order reaction.	$K_{1} = \text{Rate constant f}$ $K_{1} = \text{Rate constant f}$ $\downarrow \qquad \downarrow \qquad$	for First order reaction. slope = -k/2.303 $t \rightarrow t$ MPLES $t^{1/2}O_2$ $0 \rightarrow acid \rightarrow CH_3COOCH + CH_3OH$ $acid \rightarrow C_6H_12O_6 + C_6H_{12}O_6$ $t_2 + 2H_2O$ $\rightarrow C_6H_5OH + N_2 + HCl$ $0 \rightarrow H^+ \rightarrow CH_3COOH + C_2H_5OH$ $P(s) + 3H_2(g)$ $b_2 + 1/2O_2$ uired to consume the half of
Half Life	[A]=Concentration of A k_0 = Rate constant for z k_0 = Rate constant for z Unit of rate constant = mo Examples: • Enzyme reactions Decomposi surface of metal decomposition of HI Half Life: Time required of initial concentration o	A at time t. tero order reaction.	$K_{1} = \text{Rate constant f}$ $K_{1} = \text{Rate constant f}$ $\downarrow \qquad \downarrow \qquad$	for First order reaction. slope = -k/2.303 $t \rightarrow t$ WPLES $+\frac{1}{2}O_2$ $0 \rightarrow acid \rightarrow CH_3COOCH + CH_3OH$ $acid \rightarrow C_6H_12O_6 + C_6H_{12}O_6$ $acid \rightarrow CG_6H_5OH + N_2 + HCl$ $0 \rightarrow H^+ \rightarrow CH_3COOH + C_2H_5OH$ P(s) + 3H ₂ (g) b_2 + 1/2O ₂ uired to consume the half of of reactant is called half
Half Life	[A]=Concentration of A k_0 = Rate constant for z k_0 = Rate constant for z k_0 = Rate constant for z Unit of rate constant = mo Examples: • Enzyme reactions Decomposition of HI decomposition of HI Half Life: Time required of initial concentration of half life period.	A at time t. tero order reaction.	<i>K</i> ₁ = Rate constant f <i>K</i> ₁ = Rate constant f <i>K</i> ₁ = Rate constant f <i>K</i> ₁ = S ⁻¹ EXAI 1. H ₂ O ₂ \rightarrow H ₂ O 2. CH ₃ COOCH ₃ + H ₂ O 3. C ₁₂ H ₁₂ O ₁₁ + H ₂ O 4. NH ₄ NO ₂ \rightarrow NJ 5. C ₆ H ₅ N = NCl + H ₂ O 6. CH ₃ COOC ₂ H ₅ + H ₂ C 7. 2PH ₃ (g) \rightarrow 2I 8. N ₂ O ₅ \rightarrow 2NC Half Life: Time requirinitial concentration life period.At t = t ₁	for First order reaction. slope = -k/2.303 $t \rightarrow t$ MPLES $+ \frac{1}{2}O_2$ $0 \rightarrow acid \rightarrow CH_3COOCH + CH_3OH$ $acid \rightarrow C_6H_12O_6 + C_6H_{12}O_6$ $acid \rightarrow C_6H_3OH + N_2 + HCl$ $0 \rightarrow C_6H_5OH + N_2 + HCl$ $0 \rightarrow C_6H_5OH + N_2 + HCl$ $0 \rightarrow C_6H_5OH + C_2H_5OH$ $P(s) + 3H_2(g)$ $b_2 + 1/2O_2$ uired to consume the half of of reactant is called half $2[A] = [A_0]/2$
Half Life	[A]=Concentration of A k_0 = Rate constant for z k_0 = Rate constant for z \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	A at time t. tero order reaction. $\int_{A_{1}} \int_{I_{A_{1}}} \int_{I_{A_{1$	K ₁ = Rate constant f K ₁ = Rate constant f .Units of k ₁ = s ⁻¹ EXAI 1. H ₂ O ₂ \rightarrow H ₂ O 2. CH ₃ COOCH ₃ + H ₂ O 3. C ₁₂ H ₁₂ O ₁₁ + H ₂ O 4. NH ₄ NO ₂ \rightarrow N ₂ 5. C ₆ H ₅ N = NCl + H ₂ O 6. CH ₃ COOC ₂ H ₅ + H ₂ O 7. 2PH ₃ (g) \rightarrow 2I 8. N ₂ O ₅ \rightarrow 2NO Half Life: Time requiring the period. At t = t ₁ /k ₁ = (2.303/t _{1/2}) log	for First order reaction. slope = -k/2.303 $t \rightarrow t$ MPLES $+ \frac{1}{2}O_2$ $0 \rightarrow acid \rightarrow CH_3COOCH + CH_3OH$ $acid \rightarrow C_6H_12O_6 + C_6H_{12}O_6$ $acid \rightarrow C_6H_3OH + N_2 + HCl$ $0 \rightarrow C_6H_5OH + N_2 + HCl$ $0 \rightarrow C_6H_5OH + N_2 + HCl$ $0 \rightarrow C_6H_5OH + C_2H_5OH$ $P(s) + 3H_2(g)$ $b_2 + 1/2O_2$ uired to consume the half of of reactant is called half $2[A] = [A_0]/2$
Half Life	[A]=Concentration of A k_0 = Rate constant for z k_0 = Rate constant for z k_0 = Rate constant for z Unit of rate constant = mo Examples: • Enzyme reactions Decomposition of HI decomposition of HI Half Life: Time required of initial concentration of half life period.	A at time t. tero order reaction. $\int_{A_{1}} \int_{I_{A_{1}}} \int_{I_{A_{1$	<i>K</i> ₁ = Rate constant f <i>K</i> ₁ = Rate constant f <i>K</i> ₁ = Rate constant f <i>K</i> ₁ = S ⁻¹ EXAI 1. H ₂ O ₂ \rightarrow H ₂ O 2. CH ₃ COOCH ₃ + H ₂ O 3. C ₁₂ H ₁₂ O ₁₁ + H ₂ O 4. NH ₄ NO ₂ \rightarrow NJ 5. C ₆ H ₅ N = NCl + H ₂ O 6. CH ₃ COOC ₂ H ₅ + H ₂ C 7. 2PH ₃ (g) \rightarrow 2I 8. N ₂ O ₅ \rightarrow 2NC Half Life: Time requirinitial concentration life period.At t = t ₁	for First order reaction. slope = -k/2.303 $t \rightarrow t$ WPLES $+\frac{1}{2}O_2$ $0 \rightarrow acid \rightarrow CH_3COOCH + CH_3OH$ $acid \rightarrow C_6H_12O_6 + C_6H_{12}O_6$ $acid \rightarrow C_6H_3OH + N_2 + HCl$ $0 \rightarrow C_6H_5OH + N_2 + HCl$ $0 \rightarrow C_6H_5OH + N_2 + HCl$ $0 \rightarrow C_6H_5OH + C_2H_5OH$ $P(s) + 3H_2(g)$ $b_2 + 1/2O_2$ uired to consume the half of of reactant is called half $2[A] = [A_0]/2$ $i([A]_0 / [A_0/2])$

Half life is directly proportion	n of the concentration of the reactant for a first			
initial concentration of the rea				
rate of will takes place faster reaction ≥ 2.Concentration of Real > 3. Temperature:-On index weather the reaction is explaned increase on increases term molecule. > Relation between rate content	at:-Reaction having less value of activation energy actant:- Rate of reaction a Conc. of Reactant creasing temperature, rate of reaction increases exothermic or endothermic because KE of molecule mperature which led to increasing activated			
•	It is defined as ratio of rate of a reaction at two nich will bediffer by $10 {}^{\circ}\text{C}$			
> 5.Presence of catalyst:-I decreases therefore rate > 6.Exposure of radiation: radiation. These reaction > $H_2 + Cl_2 \longrightarrow 2HCl(very slow)$	in the presence of catalyst, Ea(Activation energy) of reaction increases -Rate of some reaction increases on exposure of are called photochemical reaction For Example:- areaction) $H_2 + Cl_2 \xrightarrow{h_2} 2HCl(explosive)$			
	the first order thermal decomposition of			
SO ₂ Cl ₂ at a constant volume. SO ₂ Cl ₂ (g)	\rightarrow SO ₂ (g) + Cl ₂ (g). Calculate the rate constant.			
Exp Time/s ⁻¹ Total pressure/atm Ans:Gi	ven p ₀ = 0.5 atm P _t = 0.6 atm t= 100 sec n =2/1 = 2			
1 0 0.5 k ₁ =(2.3	03/ t)log (n-1)P₀ / nP₀-Pt			
2 100 0.6 OR k ₁ =	(2.303/100)log(0.5) / 2(0.5)-0.6 Or K ₁ =2.231 x 10 ⁻³ sec ⁻¹			
Arrhenius It shows the relationship bet	ween activation energy and rate constant and effect			
Equation of temp on rate constant.				
$\mathbf{k} = \mathbf{A} \mathbf{e}^{(-\mathbf{E}_a/\mathbf{RT})}$				
InA InA $Slope = -Ea/R$ IT	Slope =-Ea/2.303R			
$\log K_2/K_1 = E_a/2.303R [1/T_1 - 1/T_2]$				
THRESHOLD The Minimum extra amt of energy which the reactants molecules must have so that reactant				
	molecule reacts and overcome the energy barriers and converts into products.			
ACTIVATION The Minimum extra amt of energy	e energy barriers and converts into products. absorbed by the reactant molecule so that their energy becomes			
ACTIVATIONThe Minimum extra amt of energyENERGYequal to threshold energy.	absorbed by the reactant molecule so that their energy becomes			
ACTIVATIONThe Minimum extra amt of energy equal to threshold energy.ENERGYequal to threshold energy.Applications of traction of the state of reaction ∞ 1/ Act	absorbed by the reactant molecule so that their energy becomes			
ACTIVATIONThe Minimum extra amt of energy equal to threshold energy.ENERGYequal to threshold energy.Applications of Activation(i)Rate of reaction ∞ 1/ Act (ii)To find the nature of reaction	absorbed by the reactant molecule so that their energy becomes tivation Energy ction (Exothermic/Endothermic reaction)			
ACTIVATIONThe Minimum extra amt of energy equal to threshold energy.ENERGYequal to threshold energy.Applications of Activation(i)Rate of reaction ∞ 1/ Act (ii)Energy:- (A)(Activation Energy of Proceed)	absorbed by the reactant molecule so that their energy becomes			

Collision Theory of	•	Collision frequency (Z):- The number of collisions taking place per second per unit volur of the reaction mixture is known as collision frequency (Z).			
Reaction Rate	•	Rate = Z_{AB} e ^{-Ea/RT} Where Z=collision frequency and -E _a /RT =Fraction of molecule having equal or more then activation energy.			
	•	For a collision to be effective, the following two barriers are to be cleared.			
		Energy Barrier 2.Orientation Barrier			
	•	To account for the orientation factor for the collision to be effective , Probability or Orientation or Steric factor(P) has been introduced Rate = $PZ_{AB} e^{-Ea/RT}$			

UNIT-4 - d and f- BLOCK ELEMENTS

1	d-block elements are called transition elements	as they have incomplete d-orbitals in neutral or most stable oxidation state.		
2	Zn, Hg, Cd, are not included as transition elements and why?	as they have filled d-orbitals in neutral and most stable +2 oxidation state.		
3	Sc^{3+} has d^0 configuration but it is transition metal	Because of partially filled d ¹ configuration of Sc		
4	First series transition elements shows irregular trend of atomic radii	Due to shielding effect of inner 3d electrons which overcome ENC.		
5	Atomic radii of Zr to Hf are almost same.	due to Lanthenoid Contraction.		
6	First series transition elements shows irregular trend of IE	It is because of mutual exchange of energy between d and f orbitals after removal of one electron.		
7	Transition metals have strong metallic bond, have high enthalpy of atomization and melting point.	due to presence of unpaired electrons.		
8	Zn, Cd, Hg are not very hard and have low M.P. and B.P.	Due to presence of all paired electrons they have least enthalpy of atomization, very weak metallic bond & are not very hard with low M.P. and B.P.		
9	d-block elements shows a large no. of oxidation state	due to presence of unpaired electrons or partially filled d- orbitals.		
10	Which first series transition metal shows highest number of oxidation states and why?	Mn shows highest number of oxidation state due presence of highest number of unpaired electrons.		
11	Which first series transition metal do not show variable oxidation states and why?	Sc , due to achieving noble gas configuration in +3 O.S		
12	Cr ³⁺ is more stable as compared to Cr ²⁺	due to stable half filled t_{2g}^3 configuration.		
13	Cu ²⁺ is more stable in solution than Cu ⁺	due to high hydration enthalpy of Cu ²⁺ ion in solution.		
14	Which first series transition metal shows +1 oxidation states and why?	Cu shows +1 oxidation state in gaseous form due to stable full filled 3d ¹⁰ configuration.		
15	Higher oxidation states of transition metals found in their oxides and fluorides	because higher oxidation states stabilized by highly electronegative elements such as O and F		

16	higher oxidation states are more common in oxides rather than fluorides of transition metals.	due to formation of $d\pi\text{-}p\pi$ bond between metal and oxygen.		
17	+2 O.S becomes more stable in first series transition elements moving from left to right	as number of unpaired electrons decreases.		
18	Write oxoanions of first series transition metals in which group number and O.N. of transition metal are same-	MnO ₄ -, Cr ₂ O ₇ ²⁻ , VO ₃ -, CrO ₄ ²⁻		
19	Moving from left to right E ⁰ for M ²⁺ /M becomes less negative but it shows irregular trend	trends due to irregular variation of $IE_1 + IE_2$.		
20	For copper E ⁰ Cu ²⁺ /Cu is +ve (+0.34 V)	it is due to low hydration enthalpy of Cu ²⁺ which cannot compensate $\Delta_{sub}H^0$ + IE ₁ + IE ₂ .		
21	For Mn , $E^0 Mn^{3+}/Mn^{2+}$ is +ve	because by converting into Mn^{2+} it achieves half filled configuration.		
22	For Cr , $E^0 Cr^{3+}/Cr^{2+}$ is –ve	because Cr^{3+} is more stable due to half filled t_{2g} configuration.		
23	Most of the compounds of transition metal are coloured in solid state as well as in their solution form.	It is due to d-d transition		
24	(Sc ³⁺ , Ti ⁴⁺) does not exhibit any colour	Ions with vacant d-orbitals (d ⁰) as d-d transition is not possible in this type of ions.		
25	(Zn ²⁺ , Cu ⁺) does not exhibit any colour	full filled d-orbitals (d ¹⁰) as d-d transition is not possible in this type of ions.		
26	Transition metals or ions are paramagnetic in nature	Due to presence of unpaired electrons (d ¹⁻⁹)		
27	Transition metal form large number of coordination complexes	High charge by mass ratio, availability of vacant d-orbital & Variable oxidation state		
28	What are Interstitial compounds?	Compounds in which small elements like H, B, C, N trapped in the interstitial space of metal lattice.		
29	Transition metals form Interstitial compounds.	due to availability of interstitial space in metal lattice.		
30	Why interstitial compounds are found to be more useful than pure metal?	These compounds have high M.P as compared to pure metals. These are very hard. Retain metallic conductivity and are Chemically inert.		
31	Transition metals and their compounds are widely used as catalyst	Due to large surface area, variable oxidation state & Availability of vacant d-orbitals		
32	transition metals form alloy.	Due to comparable metallic radii		
33	Why oxides of Higher oxidation states of transition metals are acidic in nature whereas lower O.S. are basic in nature? Actinoids shows greater number of oxidation	Higher oxidation states are more polarizing in nature . hence are acidic in nature whereas lower O.S. are less polarizing hence are basic in nature. Due to comparable energy of 5f, 6d, and 7s orbitals.		
54	states then lanthanoids	Due to comparable energy of 51, ou, and 75 of bitals.		

35	It is difficult to study chemistry of actinoids.	Due to radio active nature and small half life	
36	Ce(IV) is a good oxidizing agent in aq. sol ⁿ	because in aq. solution its $E_{Ce}^{4+}/_{Ce}^{3+}$ is +1.74 V	
37	Actinoid contraction is greater from element to	because of poor shielding by 5f orbitals due to its	
	element as compared to lanthanoids .	superficial position.	
	<u>Potassium Dichromate [K₂Cr₂O₇]</u>	Potassium Permanganate [KMnO ₄]	
-	paration:	Preparation: from pyrolucite ore [MnO2]	
It is	prepared from chromite ore : $FeCr_2O_4$ / FeO	<u>Step 1</u> :	
Cr_2C) ₃	$2MnO_2$ (Black)+ $4KOH+O_2 \longrightarrow 2K_2MnO_4$ (Green)+ $2H_2O$	
<u>Step</u>		<u>Step 2</u> :	
	$Cr_2O_4 + 8Na_2CO_3 + 7O_2 \rightarrow 8Na_2CrO_4 + 2Fe_2O_3 +$	$3MnO_{4^{2}}$ (Green)+ $4H^{+} \rightarrow 2MnO_{4}$ (Purple)+ MnO_{2} + $2H_{2}O$	
800		Oxidizing Character: (Oxidation in acidic medium)	
<u>Step</u>	<u>02</u> : $2Na_2CrO_4$ (Yellow)+ H_2SO_4 \longrightarrow	$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	
	$Na_2Cr_2O_7(Orange)$ + Na_2SO_4 +	Eq. mass of $KMnO_4 = 158/5 = 31.6$	
H ₂ O		$MnO_4 + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$	
<u>Step</u>	$\underline{3}: \operatorname{Na_2Cr_2O_7} + 2\operatorname{KCl} \longrightarrow \operatorname{K_2Cr_2O_7} + 2\operatorname{NaCl}$	$2MnO_4^{-} + 10Cl^{-} + 16H^{+} \longrightarrow 2Mn^{2+} + 8H_2O + 5Cl_2$	
D.C.	Orange Orange	$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$	
	$\frac{\operatorname{ct} \operatorname{of} pH}{\operatorname{ct}}$	$2MnO_4^{-+}5SO_3^{2-+}6H^+ \longrightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$	
	D_7^{2-} (Orange) + 20H ² \longrightarrow 2CrO ₄ ²⁻ (Yellow) +	$2MnO_4^{-+}5NO_2^{-+}6H^{+} \longrightarrow 2Mn^{2+} + 5NO_3^{-+} + 3H_2O_2^{}$	
H ₂ O		$2MnO_4 + 5S^2 + 16H^+ \longrightarrow 2Mn^{2+} + 5S + 8H_2O$	
	$O_{4^{2-}}$ (Yellow) + 2H ⁺ \longrightarrow Cr ₂ O _{7²⁻} (Orange) +	$2MnO_4 + 3H_2O + I \longrightarrow 2MnO_2 + IO_3 + 2OH$	
H ₂ O		$8MnO_4^- + 3S_2O_3^{2-} + H_2O \longrightarrow 8MnO_2 + 6SO_4^{2-} + 2OH^{-2}$	
	dizing Character: Dichromate ion acts as strong	$2MnO_4 + 3Mn^2 + 2H_2O \longrightarrow 5MnO_2 + 4H^+$	
	lizing agent in acidic medium.		
	$07^{2-} + 14H^{+} + 6e^{-} \longrightarrow 2Cr^{3+} + 7H_2O$		
	$D_{7^{2^{-}}} + 14H^{+} + 6I^{-} \longrightarrow 2Cr^{3^{+}} + 7H_{2}O + 3I_{2}$ $D_{7^{2^{-}}} + 14H^{+} + 6Fe^{2^{+}} \longrightarrow 2Cr^{3^{+}} 7H_{2}O + 6Fe^{3^{+}}$		
	$D_{7^{2}} + 14H^{+} + 6Fe^{2} \longrightarrow 2CI^{3} / H_{2}O + 6Fe^{3}$		
_	$D_{7^2} + 8H^+ + 3H_2S \longrightarrow 2Cr^{3+} + 7H_2O + 3S$		
_	ock Elements	<u>Consequences</u> : 1. Resemblance in the properties of second	
	eral configuration $(n - 2) f^{1-14} (n - 1) d^{0-1} ns^2$	and third transition series from Zr & Hf) atomic size of 2^{nd}	
57L		and 3 rd transition series become same.	
57L 58C		2. Similarity in the properties of Lanthanoids:- The	
63E		decrease in atomic radii from Lanthenoid to Lanthenoid is	
64G		very less hence it is very difficult to separate these	
70Y		elements in pure state.	
701		3. Basic strength of hydroxides of Lanthanoids decreases	
		from Lanthenium (La) to Lutesium (Lu).	
		Misch Metal – It is alloy of Lanthanoids(95%) with iron	
Lar	thanoid Contraction Degular degrages in	(5%)and Trace of S, C, Al ,Ca Lanthenoid – 95% Metal +	
	thanoid Contraction- Regular decrease in nic or ionic radii of Lanthenoid with increase in	Trace of S, C, Al ,Ca + Iron – 5%	
	nic or fonic radii of Lanthenoid with increase in nic number is called Lanthenoid contraction.	Uses- making bullet shells and flinter of lighters.	
	se: It is due to imperfect shielding of one 4f		
	tal by another 4f orbital due to which ENC		
	larly increases with increase in atomic number.		
regi	Lanthanoids	Actinoids	
Last	electron enters in 4f orbital	Last electron enters in 5f orbital	
	natural elements and non radioactive in nature		
Are	natural elements and non radioactive in nature	Are radioactive in nature and after Np they are synthetic elements	
Sho	ws less number of oxidation states [+2,+3,+4]	Shows greater number of oxidation states [+3,+4,+5,+6,+7]	
Elen	nent to element lanthanoid contraction is less	Element to element actinoid contraction is more	

LESSON: COORDINATION COMPOUNDS

Simple Salt	Double Salt	Complex Salt
Contain one type of cation and one type of anion.	Contain two types of cations.	Contain complex ion.
E.g. NaCl.	E.g. Mohr's salt (NH ₄) ₂ SO ₄ . FeSO ₄ . $6H_2O$, Potash Alum- Al ₂ (SO ₄) ₃ . K ₂ SO ₄ .24H ₂ O	Eg. $K_4Fe(CN)_6 \rightarrow 4K^+ + [Fe(CN)_6]^{4-}$

Transition metal have great tendency to form coordination compounds because: Small size and high charge, Availability of vacant d-orbitals & Tendency to show variable oxidation states.

Basic Terms

<u>1. Coordination Sphere</u> : Central metal atom and	4.Coordination Number: Number of coordinate
ligands bonded to CMA called coordination sphere \rightarrow	bonds formed by ligands with central metal atom in
represented in a square bracket.	the complex is called coordination number of complex.
<u>2. Central Metal Atom</u> : Accept electrons for the	eg $[Mg(EDTA)]^{2-}$ $[Fe(CN)_6]^{4-}$ $[Co(en)_3]^{3+}$
formation of coordinate bond is called central metal	$\downarrow \qquad \downarrow \qquad \downarrow$
atom. (Lewis acid)	C.N. 6 6 6
<u>3. Ligand</u> : Provide pair of electron for formation of	5) Homoleptic and Hetroleptic Complexes:
coordinate bond to central metal atom is called ligand.	A complex with same type of ligands surrounding
(Lewis Base)	central metal atom is called homoleptic complex. E.g
F [.] -Fluorido, Cl [.] - Chlorido, Br [.] -Bromido	$[Cu(NH_3)_4]^{2+}$, $[Pt(NH_3)_4]^{2+}$
I ⁻ - Iodido, H ⁻ -Hydrido, OH ⁻ - Hydroxido	A complex with different types of ligands surrounding
CN ⁻ -Cyanido, SCN ⁻ - Thiocyanato	central metal atom is called hetroleptic complex. E.g.
NCS - Isothiocyanato, CH ₃ COO - Acetato	[Pt(NH ₃) ₂ Cl ₂]
SO_4^{2-} - Sulphato, CO_3^{2-} - Carbonato	6. Coordination Polyhedron: Spatial arrangement of
$(COO^{-})_2$ or $C_2O_4^{2^-}$ - Oxalato (ox), NO ₃ ⁻ - Nitrato	ligands around central metal atom or ion is called
NO ₂ ⁻ - Nitrito(N), PO ₄ ³⁻ - Phosphato	coordination polyhedron.
Neutral ligands- H ₂ O- Aqua , NH ₃ - Ammine	Writing Formula of Coordination Complex:
R NH ₂ -Alkanamine, CO –Carbonyl,	1. Cation is written first followed by anion.
$H_2NCH_2CH_2NH_2$ - ethane-1,2–diamine	2. In coordination sphere central metal atom is
Ethylenediaminetetraacetate ion (EDTA4-)	written first followed by ligands.
Ligand which has two different donor atoms and	3. If more than one type of ligands are present then
either of the two ligetes in the complex is called	alphabet is followed.
ambidentate ligand. Examples NO ₂ - and SCN-	$Na_2[Fe(H_2O)_4 (NO) Br]$
Nomenclature of Coordination Compounds:	oxidation number is indicated in perantheses'()'.
1) Cation is written first followed by anion.	(1) Na ₂ [Fe (H ₂ O) Br ₄ (NO)]
2) While writing name of coordination sphere	Sodium tetrabromidonitrosylferrate (II)
ligands are named first followed by central metal	(2) [Fe (H_2O) ₄ Br (NO)] SO ₄
atom.	Tetraquabromidonitrosyliron (III) sulphate
3) To indicate number of ligands prefix di, tri, tetra, penta, hexa, hepta etc are used. If ligands itself	(3) K ₄ [Fe (CN) ₆]
involve such prefixes in its name then prefix bis,	Potassium hexacyanoferrate (II)
tris, tetrakis, and so on are used to indicate	(4) [Cr (NH ₃) ₃ (H ₂ O) ₃] Cl ₃
number of ligands.	Triamminetriaquachromium (III) Chloride
4) While writing name of central metal atom: -	(5) [Pt $(NH_3)_2$ Cl (NO_2)]
a. If coordination sphere is cation name of metal	Diamminechloridonitritoplatinum (II)
atoms written as such: Fe – Iron, Au – Gold, Cu –	(6) [Ni (CO) ₄]
Copper, Cr – Chromium, Ag – Silver.	Tetracarbonyl Nickel (0)
b. If, coordination sphere is anion suffix 'ate' is used to write name of central metal atom. Such as: Fe –	(7) CO (NH ₃)₅ CO ₃] Cl
Ferrate, Hg – Mercurate, Cu – Cuperate, Ag –	Pentamminecarbonato cobalt (III) chloride
Argentate, Au – Aurate, Pd – Peladate, Cr –	(8) K_3 [Cr (C ₂ O ₄) ₃]
Chromate	Potassium trioxalate chromate (III)
5) After writing name of central metal atom its	(9) Hg [Co (SCN) ₄]
L	

	Mercury tetrathiocyanato cobaltate (III)	
Isomerism in Coordination Compounds	(b) Stereoisomerism	
(a) Structural isomerism	(i) Geometrical isomerism- Arises in heteroleptic	
(i) Linkage isomerism- Arises in a coordination	complexes due to different possible geometric	
compound containing ambidentate ligand. M–SCN, M–	arrangements of the ligands.	
NCS & (–NO ₂), (–ONO)	If same ligands are on same side – Cis isomer.	
(ii) Coordination isomerism- Arises from the	If same ligands are on opposite side – trans isomer.	
interchange of ligands between cationic and anionic	Tetrahedral complexes does not exhibit geometrical	
entities of different metal ions present in a complex.	isomerism due to some relative position of ligands	
[Co(NH ₃) ₆][Cr(CN) ₆] & [Cr(NH ₃) ₆][Co(CN) ₆]	around central metal atom.	
(iii) Ionisation isomerism- Arises when the counter	Square planner complexes with formula MA2B2- two	
ion in a complex salt is itself a potential ligand and can	geometrical isomers, MABCD- Three isomers	
displace a ligand which can then become the counter	Octahedral complexes- MA_4B_2 , $M(aa)_2 A_2$ – Cis & trans	
ion.	MA ₃ B ₃ - Fac & mer isomers	
$[Co(NH_3)_5(SO_4)]Br \& [Co(NH_3)_5Br]SO_4.$	(ii) Optical isomerism- Optical isomers are mirror	
(iv) Solvate isomerism- Arises due to exchange of	images that cannot be superimposed on one another.	
H ₂ O as ligand and counter anion in the complex.	These are called as enantiomers.	
$[Cr(H_2O)_6]Cl_3\& [Cr(H_2O)_5Cl]Cl_2.H_2O$	[PtCl ₂ (en) ₂] ²⁺	
Bonding in coordination compounds.		

Bonding in coordination compounds-

(I) <u>Werner's Coordination Theory-</u>

Primary valence is ionizable and refers charge present on complex ion.

Secondary valence is non-ionizable and refers coordination number of complex.

The ions/groups bound by the secondary linkages to the metal have characteristic spatial arrangements corresponding to different coordination numbers.

2) Valence Bond Theory or VBT

Complex	Oxidation	Hybridi	Geometry	Magnetic	Number of	Outer sphere /
	state of	-zation		nature	unpaired	Inner sphere
	СМА				electrons	
[Co(NH ₃) ₆] ³⁺	+3	d²sp³	Octahedral	Diamagnetic	0	Inner sphere
[CoF ₆] ³⁻	+3	sp ³ d ²	Octahedral	Paramagnetic	0	Outer sphere
[Co(C ₂ O ₄) ₃] ³⁻	+3	d²sp³	Octahedral	Diamagnetic	0	Inner sphere
[Mn(CN) ₆] ²⁻	+2	d²sp³	Octahedral	Paramagnetic	1	Inner sphere
[Fe(CN) ₆] ³⁻	+2	d²sp³	Octahedral	Paramagnetic	1	Inner sphere
[Fe(H ₂ O) ₆] ³⁺	+2	sp ³ d ²	Octahedral	Paramagnetic	5	Outer sphere
[Ni(NH ₃) ₆] ²⁺	+2	sp ³ d ²	Octahedral	Paramagnetic	2	Outer sphere
[NiCl ₄] ²⁻	+2	sp ³	Tetrahedral	Paramagnetic	2	
[Ni(CO) ₄]	0	sp ³	Tetrahedral	Diamagnetic	0	
[Ni(CN) ₄] ²⁻	+2	dsp ²	Square planner	Diamagnetic	0	

3) Crystal Field Theory [CFT]

Splitting of d-orbitals in octahedral field:	Splitting of d-orbitals in tetrahedral field:

$(M) \rightarrow (M) \rightarrow (M) \rightarrow (L) $	$(M) \rightarrow (M) \rightarrow (U) $
Metal Carbonyls: Homoleptic complex of transition metal with carbonyl ligand are called metal carbonyls. E.g. [Ni(CO) ₄], [Fe(CO) ₅], [Cr(CO) ₆],[CO ₂ (CO) ₈], [CO ₃ (CO) ₁₂], [Mn ₂ (CO) ₁₀] The metal-carbon bond in metal carbonyls possess both σ and π character. The M–C σ bond is formed by the donation of lone pair of electrons on the carbonyl carbon into a vacant orbital of the metal. The M–C π bond is formed by the donation of a pair of electrons from a filled d orbital of metal into the vacant antibonding π^* orbital of carbon monoxide. The metal to ligand bonding creates a synergic effect which strengthens the bond between CO and the metal. $d\pi$ -p π Back Bond Application of Coordination Complexes: a) Biological System: Chlorophyll – complex of Mg Haemoglobin – complex of Fe, Vit. B-12 – complex of Co	 b) Metallurgy: Extraction of Au, Ag, by cyanide process. Refining of Ni by Mond's process Refining of Zr by Van Arkel process. c) Quantitative Analysis: Estimation of hardness of water Ca²⁺ and Mg²⁺ are estimated by complexomatric titration using EDTA. d) Qualitative Analysis: Cu²⁺, Fe²⁺, Zn²⁺, Ni²⁺, NO⁻₃, etc ions are confirmed by reactions involving complex formation. e) Industrial Catalyst: [(Ph₃P)₃RhCl], a Wilkinson catalyst, is used for the hydrogenation of alkenes f) Black & White Photography: In black and white photography, the developed film is fixed by washing with hypo solution which dissolves the undecomposed AgBr to form a complex ion, [Ag(S₂O₃)₂]³⁻. g) As medicines: Cisplatin [Cancer Treatment], EDTA [Used to remove heavy metal poison using chelate therapy.

ORGANIC CHEMISTRY

1. IUPAC NOMENCLATURE : SOME BASIC RULES

1. The four components of IUPAC name are:

Prefix(subst) \rightarrow Word root(meth, eth, etc) \rightarrow Pri. Suffix (ane/ene/yne) \rightarrow Sec Suffix(main group)

Note : if the name of sec. suffix starts with a vowel then pri suffix will be :an / en / yn]

2. locate the longest carbon chain by giving the preference as : functional group > double bond > triple bond > substituent / side chain

- 3. follow lowest SUM rule also
- 4. In a molecule the main group will be named as suffix. All the other groups will be written alphabetically as prefixes
- 5. Prefix and suffix names of the functional groups with decreasing Priority

	Group		
Sulphonic Acid	- SO₃H		sulphonic acid
Carboxylic Acid	- COOH	carboxy	oic acid
Acid Anhydride	- CO.O.CO-		oic anhydride
Ester	- COOR	alkoxy carbonyl	oate
Acid Halides	- COX	haloformyl	oyl halide
Amides	-CONH ₂	carbamoyl	amide
Nitriles(Cyanides)	- CN	cyano	Nitrile
Isonitrile(Isonitrile)	-NC	isocyano	isonitrile
Aldehyde	- CHO	formyl	al
Ketone	>C=0	oxo / keto	one
Alcohol	- OH	hydroxy	ol
Thiol	-SH	mercepto	thiol
Amines	- NH ₂	amino	amine
Ether	-0-	alkoxy	Oxy alkane
	Carboxylic Acid Acid Anhydride Ester Acid Halides Amides Nitriles(Cyanides) Isonitrile(Isonitrile) Aldehyde Ketone Alcohol Thiol Amines	Carboxylic Acid- COOHAcid Anhydride- CO.O.CO-Ester- COORAcid Halides- COXAmides- CONH2Nitriles(Cyanides)- CNIsonitrile(Isonitrile)-NCAldehyde- CHOKetone>C=OAlcohol- OHThiol-SHAmines- NH2	Carboxylic Acid- COOHcarboxyAcid Anhydride- CO.O.COEster- COORalkoxy carbonylAcid Halides- COXhaloformylAmides- CONH2carbamoylNitriles(Cyanides)- CNcyanoIsonitrile(Isonitrile)-NCisocyanoAldehyde- CHOformylKetone>C=Ooxo / ketoAlcohol- OHhydroxyThiol-SHmerceptoAmines- NH2amino

Group	Name(Prefix)	Group	Name(Prefix)
- Br	Bromo	- OCH ₃	Methoxy
- Cl	Chloro	- NO ₂	Nitro
- OCH ₂ CH ₃	Ethoxy	- NO	Nitroso
- F	Fluoro	-C ₆ H₅	Phenyl
-	lodo		

10. HALOALKANES AND HALOARENES

S.No		STRUCTURE	IUPAC NAME
1	Cł	H ₃ CH ₂ CH(CI)CH ₃	2-Chlorobutane
2	(C	:H ₃) ₃ CCH ₂ Br	1-Bromo-2,2-dimethylpropane
3	(C	CH₃)₃CBr	2-Bromo-2-methylpropane
4	Cł	$H_2 = CHCI$	Chloroethene
5	CH	₂ = CHCH ₂ Br	3-Bromopropene
6	5	(CH ₃) ₂ CHCH ₂ CH ₂ Br	1-Bromo-3-methylbutane
7	7	$H \xrightarrow{CH_3} H \xrightarrow{H} Br$	3-Bromo-2-methylpropene
8	3	CI CH ₃	2-Chloroacetophenone
9	•	$CICH_2C\equiv CCH_2Br$	1-Bromo-1-chloro-1,2,2- trifluoroethane
10	0	CH ₃ C(p-ClC ₆ H ₄) ₂CH(Br)CH ₃	2-Bromo-3,3 bis(4- chlorophenyl) butane
1	1	(CCl ₃) ₃ CCl	2-(trichloromethyl)- 1,1,1,2,3,3,3- heptachloropropane
12	2	CH ₃ CH ₂ C(CH ₃) ₂ CH ₂ I	1-iodo-2,2-dimethyl-1- phenylbutane
13	3	$CH_3C(CI)(C_2H_5)CH_2CH_3$	3-chloro-5-methylhex-2-ene
14	4	CI	1,2-Dichlorobenzene
1!	5	CH ₂ -CH ₂ -CH ₂ -Br	3-phenyl-1-bromopropane
10	6		1-Chloro-2-methylbenzene or 2-Chlorotoluene
17	7		2,4,6-trinitrochlorobenzene
18	8	Cl SO ₃ H	4-chlorobenzenesulphonic acid
19			p,p dichlorodiphenyltrichloroethane
20		C,Hs Cl	1-Chloro-4-ethylcyclohexane

11. ALCHOHOL , PHENOLS AND ETHERS

S.No	STRUCTURE	IUPAC NAME
1	CH₃-OH	Methanol
2	CH ₃ -CH ₂ -OH	Ethanol
3	$CH_3 - CH_2 - CH_2 - OH$	Propan-1-ol
4	$\begin{array}{c} \mathrm{CH_3-CH-CH_2-CH_3}\\ \mathrm{I}\\ \mathrm{OH} \end{array}$	Butan-2-ol
5	$\begin{array}{c} CH_3 - CH - CH_2 - OH \\ I \\ CH_3 \end{array}$	2-Methylpropan-1-ol
6	$\begin{array}{c} CH_3\\ I\\ CH_3-C-OH\\ I\\ CH_3\end{array}$	2-Methylpropan-2-ol
7	$\begin{array}{c} \mathrm{CH}_2-\mathrm{CH}-\mathrm{CH}_2\\ \mathrm{I} & \mathrm{I} & \mathrm{I}\\ \mathrm{OH} & \mathrm{OH} & \mathrm{OH} \end{array}$	Propane -1, 2, 3-triol
8	OH O	Phenol
9	CH3	2-methylphenol
10	OH CH ₃	3-methylphenol
11	ОНОН	2-hydroxyphenol
12	OH OH OH	4-hydroxyphenol
13		2,4,6-trinitrophenol

14	CH ₃ OCH ₃	Methoxymethane
15	$C_2H_5OC_2H_5$	Ethoxyethane
16	C ₆ H ₅ OCH ₃	Methoxybenzene (Anisole)
17	CH ₃ O-CH-CH ₃ I CH ₃	2-Methoxypropane
18	$C_6H_5-O-CH_2-CH_2-CH-CH_3$	3- Methylbutoxybenzene
19	H ₃ C CH ₃ OC ₃ H ₅	2-Ethoxy- -1,1-dimethylcyclohexane
20	CH ₃ - O - CH ₂ - CH ₂ - OCH ₃	1,2-Dimethoxyethane

12. ALDEHYDES KETONES CARBOXYLIC ACIDS

S.No	STRUCTURE	IUPAC NAME
1	НСНО	Methanal
2	CH ₃ CHO	Ethanal
3	(CH ₃) ₂ CHCHO	2-Methylpropanal
4	H ₃ C CHO	3-Methylcyclohexanecarbaldehyde
5	CH ₃ CH(OCH ₃)CHO	2-Methoxypropanal
6	CH2=CHCHO	Prop-2-enal
7	СНО	Benzene-1,2-dicarbaldehyde
8	CHO Br	3-Bromobenzenecarbaldehyde or 3-Bromobenzaldehyde
9	О Н ₃ С-Ё-СН ₂ СН ₃	2-butanone

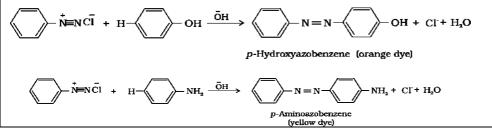
1	· · · · · · · · · · · · · · · · · · ·	
10	CH ₃ O H ₃ C−C−CH ₂ ·C−CH ₃ Br	4-bromo-4-methyl-2-pentanone
11	О Н ₃ С-С-СН ₃	Acetone
12	О −сн₂·с⊓3	Benzyl methyl ketone
13	СНО	Salicylaldehyde
14	CH=CH-CHO	Cinnamaldehyde
15	O Ph-Č-Ph	benzophenone
16	CH ₃ COOH	Ethanoic acid
17	CH ₃ CH ₂ CH ₂ COOH	Butanoic acid
18	(CH ₃) ₂ CHCOOH	2-Methylpropanoic acid
19	HOOC -(CH ₂) ₂ -COOH	Butanedioic acid
20	HOOC -(CH ₂) ₄ -COOH	Hexanedioic acid
21	Соон	Benzenecarboxylic acid (Benzoic acid)
22	CH ₂ COOH	2-Phenylethanoic acid
23	СООН	Benzene 1,2dicarboxylic acid
12 4540		

13. AMINES

S.No	STRUCTURE	IUPAC NAME
1	$CH_{3-}-CH_{2}-NH_{2}$	Ethanamine
2	$CH_3-CH_2-CH_2-NH_2$	Propan-1-amine
3	$CH_3 - N - CH_2 - CH_3$ H	N-Methylethanamine
4	$C_{2}H_{5} - N - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - CH_{3}$ $I - C_{2}H_{5}$	N,N-Diethylbutan-1-amine
5	$CH_3 - N - CH_3$ CH_3	N,N-Dimethylmethanamine
6	$NH_2 - CH_2 - CH_2 = CH_2^3$	Prop-2-en-1-amine

	$NH_2 - (CH_2)_6 - NH_2$	Hexane-1,6-diamine
7	NH ₂	Aniline or Benzenamine
8	NH ₂ CH ₃	2-Methylaniline
9	NH ₂ Br	4-Bromobenzenamine or 4-Bromoaniline
10	N(CH ₃) ₂	N,N-Dimethylbenzenamine

2. NAME REACTION


A. HALOALKANES AND HALOARENES

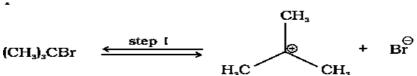
Wurtz reaction : Alkyl halides react with sodium in dry ether to give hydrocarbons(Alkanes) containing double the number of carbon atoms	$2R - X + 2Na \xrightarrow{Dry ether} \rightarrow R - R + 2NaX$ $2CH3 - Br + 2Na \xrightarrow{Dryeher} CH3 - CH3 + 2Na Br$
present in the halide.	
Fittig reaction: Aryl halides(Haloarenes) when	$2Ar - X + 2Na^{Drydier} \rightarrow Ar - Ar + 2NaX$
treated with sodium in dry ether gives in which	$2 \longrightarrow X + Na \xrightarrow{\text{Ether}} 1 + 2NaX$
two aryl groups are joined together.	
Wurtz-Fittig reaction : A mixture of an alkyl halide(Haloalkanes) and aryl halide(Haloarenes.) givesan alkylarene when treated with sodium in dry ether.	$Ar - X + Na + R - X \xrightarrow{Drydher} Ar - R + 2NaX$ $X + Na + RX \xrightarrow{Ether} R + NaX$
Finkelstein reaction: Alkyl chlorides/ bromides on	$R - CI + NaI \xrightarrow{acetone} R - I + NaCI$
reaction with Nal in dry acetone to give Alkyl iodides.	$R - Br + NaI \xrightarrow{acetone} R - I + NaBr$
Swarts reaction Heating of alkyl chloride/bromide in the presence of a metallic fluoride such as AgF,Hg2F2, CoF2 or SbF3 to give alkyl fluorides	R − X AgF,Hg2F2, CoF2 or SbF3 \rightarrow R − F CH3 −Br + AgF \rightarrow CH3 −F + AgBr
12. ALCOHOLS, PHENOLS AND ETHERS	
Hydroboration –oxidation reaction : The alcohol obtained corresponds to anti- Markownikov 's addition of water on alkenes.	$CH_{3}-CH=CH_{2} (i)B_{2}H_{6}(ii)H2O2/OH^{-} \rightarrow CH_{3}-CH_{2}-CH_{2}-OH$
Reimer-Tiemann reaction-	он он
	CHCl ₃ + aq NaOH Salicylaldehyde
Kolbe's reaction	$\begin{array}{ccc} OH & ONa & OH \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ &$

Williamson's synthesis : In this method an alkyl halide (Better results are obtained if the alkyl halide isprimary) reacts with a	$CH_{3}CI + NaOCH_{3} \rightarrow CH_{3}OCH_{3} + NaCI$ $R-X + R'- \ddot{Q} Na \longrightarrow R- \ddot{Q} - R' + Na X$
sodium alkoxide to form symmetrical or unsymmetrical ethers.	
12. ALDEHYDES, KETONES AND CARBO	XYLIC ACID
Aldol Condensation : Aldehydes and ketones having at least one α – hydrogen undergo a condensationreaction in the presence of dilute alkali (NaOH ,KOH etc.)as catalyst to form β - hydroxyaldehyde (aldol)or β – hydroxyketone (ketol) respectively	$\begin{array}{cccc} 2 & CH_{s}-CHO & & & \\ & & & \\ Ethanal & & OH & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $
	on is carried out between two different aldehydesand / or
products. $CH_{a}CHO$ <u>1. NaOH</u> $CH_{a}-CHa$	eth of them contain α-hydrogen atoms, it gives a mixture of four =CH-CHO + CH₃CH₂-CH=C-CHO 2-enal CH₃
	cules of ethanal 2-Methylpent-2-enal from two molecules
	of propanal simple or self aldol products
CH ₃ -CH=	+
	CH ₃
_	but-2-enal Pent-2-enal le of ethanal and one molecule of propanal
	cross aldol products
Cannizzaro Reaction: Aldehydes, which do not have an α -hydrogen atom, undergo self oxidation and reduction reaction on treatment with concentrated alkali.In this reaction one molecule of the aldehydeis reduced to alcohol and another is oxidized to carboxylic acid salt.	$\begin{array}{c} H \\ H \\ H \\ H \\ \end{array} \begin{array}{c} C = 0 \\ H \\ \end{array} \begin{array}{c} H \\ H \\ \end{array} \begin{array}{c} C = 0 \\ H \\ \end{array} \begin{array}{c} H \\ \end{array} \begin{array}{c} C = 0 \\ H \\ \end{array} \begin{array}{c} H \\ \end{array} \begin{array}{c} C = 0 \\ H \\ \end{array} \begin{array}{c} H \\ \end{array} \begin{array}{c} C = 0 \\ H \\ \end{array} \begin{array}{c} H \\ \end{array} \begin{array}{c} C \\ C C $
Clemmensen Reaction: The carbonyl group of aldehydes and Ketones are reduced to CH ₂ group ontreatment with zinc amalgam(Zn/Hg) and concentrated hydrochloric acid.(Conc.HCl)	$CH_{3}CH = 0 \ \underline{Zn} - \underline{Hg}, \underline{HCl} \rightarrow CH_{3}CH_{3}$ $CH_{3}CO \ CH_{3} - \underline{Zn} - \underline{Hg}, \underline{HCl} \rightarrow CH_{3}CH_{2}CH_{3}$
Wolf Kishner Reaction	>C=O $\xrightarrow{\text{NH}_2\text{NH}_2}$ >C=NNH ₂ $\xrightarrow{\text{KOH/ethylene glycol}}$ >CH ₂ + N ₂ -H ₂ O Heat
Rosenmund Reaction: Acyl chloride (acid chloride) is hydrogenated over catalyst, palladium on barium sulphate.	$\begin{array}{c} O \\ \\ \hline \\ Pd - BaSO_{4} \end{array} \xrightarrow{\text{CHO}} CHO \\ Benzoyl chloride \end{array} \xrightarrow{\text{Benzaldehyde}} \end{array}$
Etard Reaction-	$\begin{array}{c} & & & \\ & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$
Stephen Reaction:	$\begin{array}{ccc} \text{RCN} & \stackrel{\text{SnCl}_{3} + \text{HCl}}{} & \text{RCHO} \\ & \stackrel{1}{\text{H}_{3} \circ} & \end{array}$

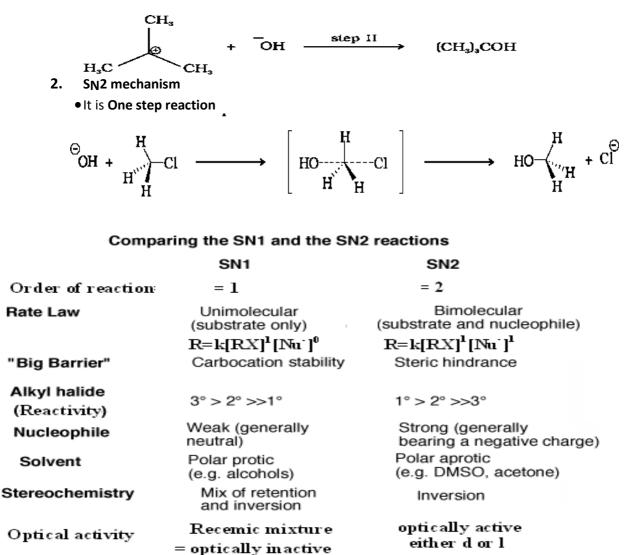
Gatterman-Koch reaction:	CO, HCl Anhyd. AlCl _s /CuCl Benzeldehyde
Ozonolysis of alkenes involves the addition of ozone molecule to alkene to form ozonide, and thencleavage of the ozonide by Zn-H ₂ O to Aldehyde and/or Ketones.	BenzeneBenzaldehyde $CH_3CH=CH_2$ 1 O_3 CH_3CHO +HCHOPropene 2 $Zn + H_2O$ EthanalMethanal
Decarboxylation : Sodium salts of acids when heated with soda lime, alkanes are formed. Hell Volhard Zelinsky: (HVZ) Carboxylic acids having an α -hydrogen are halogenated at the α - position on treatment with chlorine or bromine in the presence of small amount of red phosphorus to give α - halocarboxylic acids	$\begin{array}{c} CH_3 \ COONa + \ NaOH \ (CaO) \rightarrow CH_4 + \ Na_2CO_3 \\ \underline{Sodium \ acetate} & Sodium \ lime & Methane \\ \underline{i \ X_2/ \ Red \ phosphorus} \\ RCH_2-COOH & \underline{i \ H_2O} \\ & R-CH-COOH \\ & \\ & \\ & \\ X \\ X = Cl \ Br \\ \alpha \ -halocarboxylic \ acids \end{array}$
13. AMINES	
Hoffmann bromamide degradation reaction: primary amides are treated with bromine in the presence of an alkali, a primary amine containing one carbon less than the amide is formed.	$RCONH_2 + 4NaOH + Br_2 \rightarrow RNH_2 + 2 NaBr + Na_2CO_3 + 2H_2O$ $CH_3 - CO - NH_2 + Br_2 + 4 KOH \rightarrow CH_3 NH_2 + K_2CO_3 + 2KBr + 2H_2O$
alkaline hydrolysis produces the corresponding pri	atment with KOH which on heating with alkyl halidefollowed by mary amine.
Carbylamine reaction(Isocyanide test): Aliphatic and aromatic primary amines on heating with chloroform and ethanolic potassium hydroxide form isocyanides or carbylamines which are foul smelling substances.	$R-NH_2 + CHCl_3 + 3KOH \xrightarrow{heat} R - NC + 3KCl + 3H_2O$
Diazotization reaction- $NH_2 \xrightarrow{NaNO_3 + HX} \longrightarrow N_3 X$ Benzene diazonium balide	$C_6H_5NH_2 + NaNO_2 + 2HCl \xrightarrow{273-276K} C_6H_5N_2Cl + NaCl + 2H_2O$
Sandmeyers reaction: The Cl–, Br– and CN– nucleophiles can easily be introduced in the benzene ring inthe presence of Cu(I) ion[cuprous chloride or cuprous bromide or cuprous cyanide]	$ArN_{2}X \xrightarrow{CuCl/HCl} ArCl + N_{2}$ $ArN_{2}X \xrightarrow{CuBr/HBr} ArBr + N_{2}$ $CuCN / KCN ArCN + N_{2}$
Gatterman reaction: Chlorine or bromine can also be introduced in the benzene ring by treating thediazonium salt solution with corresponding halogen acid in the presence of copper powder Coupling reaction: Benzene diazonium chloride rea	$ArN_{2}X \xrightarrow{Cu/HCl} ArCl + N_{2} + CuX$ $ArN_{2}X \xrightarrow{Cu/HBr} ArBr + N_{2} + CuX$ acts with phenol in which the phenol molecule at its para

Coupling reaction: Benzene diazonium chloride reacts with phenol in which the phenol molecule at its para position is coupled with the diazonium salt to form *p*-hydroxyazobenzene.. Similarly the reaction of diazonium salt with aniline yields *p*-aminoazobenzene

MECHANISM:


UNIT: 10 HALOALKANES AND HALOARENES.

. SN1 mechanism


• It is **Two step reactions**.

• **Step I**: In the first step slow dissociation of alkyl halide takes place by reversible reaction forming acarbocation.

• **Step II**: The carbocation at once combines with the nucleophile to form final product (racemic mixture)

– opt Complete in steps

Intermediate

= 1 Transition state

UNIT: 11 ALCOHOLS, PHENOLS & ETHERS

3. Mechanism for the Hydration of alkenes to alcohol

<u>Mechanism-</u> The mechanism of the reaction involves the following three steps:

= 2

Carbocation

Step 1: Protonation of alkene to form carbocation by	$H_2O + H^+ \rightarrow H_3O^+$
electrophilic attack of H3O ⁺ .	$>C = C < + H - O + H \implies -C - C < + H_2O$

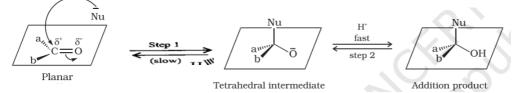
Step 2: Nucleophilic attack of water on carbocation	$\stackrel{H}{\stackrel{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{-$
Step 3: Deprotonation to form an alcohol	$\begin{array}{cccc} H & H & & & H \\ -C - C - O & H & + H_3 \ddot{O} & \rightarrow & -C - C - & + H_3 \dot{O} \\ \end{array}$

4. Mechanism for the acidic Dehydration of alcohols to give alkenes

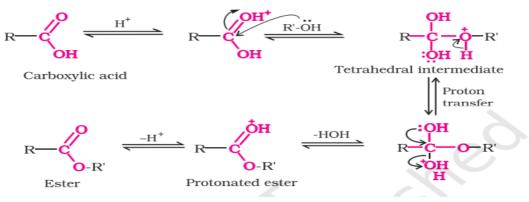
Step 1: Formation of protonated alcohol.	$\begin{array}{c} H H \\ E thanol \end{array} \begin{array}{c} H \\ H \\ H \\ H \\ H \\ E thanol \end{array} \begin{array}{c} H \\ E thanol \\ (E thyl oxonium ion) \end{array} H H H \\ H$	
Step 2: Formation of carbocation: It is the slowest step and hence, the rate determining step of the reaction.	$\begin{array}{c} H H H H H H H H H H H H H H H H H H H$	
Step 3: Formation of ethene by elimination of a proton	$\begin{array}{cccc} H & H \\ H - C & I \\ I & I \\ H & H \\ H & H \end{array} \xrightarrow{H} \begin{array}{c} H \\ C = C \\ H \\ H \\ Ethene \end{array} + H^{+}$	
Mechanism for the reaction of HI on Ethoxymethane	Mechanism for the reaction of HI on t-butyl methyl	
$\mathbf{CH}_{s} - \overset{\mathbf{O}}{\mathbf{O}} - \mathbf{CH}_{s}\mathbf{CH}_{s} + \mathbf{H} - \mathbf{I} \rightleftharpoons \mathbf{CH}_{s} - \overset{\mathbf{H}_{s}}{\mathbf{O}}^{+} - \mathbf{CH}_{s}\mathbf{CH}_{s} + \mathbf{I}$ $(\mathbf{H}_{s} - \overset{\mathbf{H}_{s}}{\mathbf{O}} - \mathbf{CH}_{s}\mathbf{CH}_{s} \rightarrow \mathbf{H}_{s} + \overset{\mathbf{H}_{s}}{\mathbf{H}_{s}} \overset{\mathbf{H}_{s}}{\mathbf{O}}^{+} - \mathbf{CH}_{s}\mathbf{CH}_{s} + \mathbf{I}$ $(\mathbf{H}_{s} - \overset{\mathbf{H}_{s}}{\mathbf{O}} - \mathbf{CH}_{s}\mathbf{CH}_{s} \rightarrow \mathbf{H}_{s} + \mathbf{CH}_{s}\mathbf{CH}_{s} - \mathbf{O} + \mathbf{CH}_{s}\mathbf{CH}_{s} + \mathbf{CH}_{s}\mathbf{CH}_{s} - \mathbf{O} + \mathbf{CH}_{s}\mathbf{CH}_{s} - \mathbf{O} + \mathbf{CH}_{s}\mathbf{CH}_{s} + \mathbf{CH}_{s}\mathbf{CH}_{s} - \mathbf{O} + \mathbf{CH}_{s}\mathbf{CH}_{s} - \mathbf{CH}_{$	ether- $\begin{array}{cccc} CH_{3} & CH_{3} & CH_{3} \\ CH_{3} - C - O - CH_{3} & \xrightarrow{\text{slow}} CH_{3} - C^{+} + CH_{3}OH \\ I & H & I \\ CH_{3} & CH_{3} & CH_{3} \\ CH_{3} - C^{+} + I^{-} & \xrightarrow{\text{fast}} CH_{3} - C^{-}I \\ I & I \\ CH_{3} & CH_{3} & CH_{3} \\ \end{array}$	

1. Mechanism for the acidic Dehydration of alcohols to give ethers H = SO

$$\begin{array}{c} \begin{array}{c} CH_{3}CH_{2}OH & \xrightarrow{H_{2}SO_{4}} \\ \hline H_{2}SO_{4} \\ \hline H_{3}K \\ \hline H_{3}CH_{3}-CH_{2}-O \\ \hline H_{3}-CH_{2}-O \\ \hline H_{3}-CH_{2}-O \\ \hline H_{4} \hline H_{4} \\ \hline H_{4} \hline \hline H_{4} \\ \hline H_{4} \hline H_{4} \\ \hline H_{4} \hline H_{4} \hline H_{4} \hline H_{4} \hline \hline H_{4} \hline H_{4} \hline \hline H_{4}$$


2. Mechanism for the addition Grignard reagent on carbonyl compounds.

The first step of the reaction is the nucleophilic addition of Grignard reagent to the carbonyl group to form anadduct. Hydrolysis of the	$>C = O + \mathring{R} \leftrightarrow \mathring{M}g - X \longrightarrow \begin{bmatrix}>C - O & \mathring{M}g - X\\ \\ R \end{bmatrix}$ Adduct
adduct yields an alcohol.	$ \xrightarrow{H_2O} >_C - OH + Mg(OH)X $ $ \xrightarrow{R} $
LINIT 12 ALDEUVDES KETONES & CADBOVVI	


UNIT: 12 ALDEHYDES, KETONES & CARBOXYLIC ACIDS

3.

Give mechanism for Nucleophilic addition reaction in carbonyl compounds.

4. Esterification

REASONING TYPE OF QUESTIONS

	10. HALOALKANES AND HALOARENES		
Giv	Give Reason s for the following:		
	QUESTION-REASONING	ANSWER- REASON	
1	Benzyl chloride is highly reactive towards the SN1 reaction.	Due to the stability of benzyl carbocation/resonance/Diagram	
2	2-bromobutane is optically active but 1-bromobutane is optically inactive	Because 2-Bromobutane has a chiral centre	
3	Electrophilic substitution reactions in haloarenes occur slowly.	Due to – I effect of halogen.	
4	Which would undergo SN1 reaction faster in the following pair and why? $CH_3 - CH_2 - Br$ and $CH_3 - C - CH_3$ Br	t-Butyl bromide because 3° carbocation intermediate derived from (CH ₃) ₃ CBr is more stable than 1° carbocation from CH ₃ CH ₂ Br.	
5	why haloarenes are much less reactive than haloalkanes towards nucleophilic substitution reactions	In haloarenes C—X bond acquires a partial double bond character due to resonance	
6	Which compound in each of the following pairswill react faster in SN2 reaction? Why?(i)CH3Br or CH3I(ii)(CH3)3C-CI or CH3-CI	 (i) CH₃–I reacts faster than CH₃–Br as iodine is a better leaving group because of its larger size. (ii) CH₃–Cl (1° halide) reacts faster than (CH₃) 3 CCl (3° halide) since in case tertiary butyl chloride three bulky methyl group hinder the approaching nucleophile 	
7	Which one of the following reacts faster in an SN1 reaction and why?	Compound (I) reacts faster in SN1 reaction as it is a 2° alkyl halide	
8	Which ones in the following pairs of substances undergoes SN2 substitution reaction faster and why? (i) CH ₂ Cl or Cl (ii) CH ₂ Cl or Cl	(i) CH_2Cl : It is primary halide therefore undergoes S_N2 reaction faster. (ii) As iodine is a better leaving group because of its large size, it will be released at a faster rate in the presence of incoming nucleophile	
9	Which one in the following pairs undergoes SN1 substitution reaction faster and why? (i) or Cl (ii) or Cl	 (i) Cl 3° halide reacts faster than 2° halide because of the greater stability of tertiary carbocation. tert-Butyl chloride (ii) Cl (iii) 2° halide reacts faster than 1° halide because of the greater stability of secondary carbocation than primary. 	
10	A solution of KOH hydrolyses $CH_3CH(CI)CH_2CH_3$ and $CH_3CH_2CH_2CH_2CI$. Which one of these is	CH ₃ CH ₂ C/CHCH ₃ more easily hydrolysed as it forms secondary carbocation which is more	

	more easily hydrolysed and why?	stable than primary carbocation	
11	Which compound in the following couples will	(a)1-Bromopentane, as it is a primary alkyl halide.	
	react faster in SN2 displacement and why? (<i>a</i>) 1-Bromopentane or 2-bromopentane (<i>b</i>) 1-Bromo-2-methylbutane or 2-bromo-2- methylbutane	(b) 1-Bromo-2-methyl butane, as it is a primary alkylhalide	
12	State one use each of DDT and iodoform	DDT: It is used as insecticide to control flies, mosquitoes, etc. lodoform: lodoform is used as an antiseptic.	
13	Haloalkanes easily dissolve in organic solvents, why?	Both have non polar hydrocarbon chain which have strong Vander Waal forces.	
14	What is known as a racemic mixture? Give an example.	An equimolar mixture of d- and <i>l</i> - isomers called racemic mixture. For example, (50:50 d+ <i>l</i>) butan-2-ol. A racemic mixture is optically inactive due to external compensation	
15	Of the two bromo derivatives, $C_6H_5CH(CH_3)Br$ and $C_6H_5CH(C_6H_5)Br$, which one is more reactive in SN1 substitution reaction and why?	$C_6H_5CH(C_6H_5)Br$ the intermediate obtained from $C_6H_5CH(C_6H_5)Br$ is more stable than obtained from $C_6H_5CH(CH_3)$ Br because it is stabilised by two phenyl groups due to resonance.	
16	Rearrange the compounds of each of the following sets in order of reactivity towards SN2 displacement: (<i>i</i>) 2-Bromo-2-methylbutane, 1-Bromopentane, 2-Bromopentane (<i>ii</i>) 1-Bromo-3-methylbutane, 2-Bromo-	 (i) 1-Bromopentane > 2-Bromopentane > 2-Bromo- 2methyl butane. (ii) 1-Bromo-2-methyl butane > 3-Bromo-2-methyl butane > 2-Bromo-2-methyl butane 	
	2methylbutane, 3-Bromo-2-methylbutane (<i>iii</i>) 1-Bromobutane, 1-Bromo-2, 2- dimethylpropane, 1-Bromo-2-methylbutane	(<i>iii</i>) 1-Bromobutane > 1-Bromo-2-methylbutane > 1- Bromo-2,2-dimethyl butane	
17	Although chlorine is an electron withdrawing group, yet it is ortho-, para-directing in electrophilic aromatic substitution reactions. Explain why it is so?	Through resonance effect, chlorine tends to stabilize the carbocation and the effect is more pronounced at ortho and para-positions	
18	Alkyl halides, though polar, are immiscible with water.	due to inability of alkyl halides to form intermolecular hydrogen bonds with water molecules.	
19	Grignard's reagents should be prepared under anhydrous conditions, why?	This is because Grignard reagent forms alkanes by reacting with moisture. RMgX +H ₂ O RH +Mg(OH)X	
20	the dipole moment of chlorobenzene is lower than that of cyclohexyl chloride	Since chlorobenzene has lower magnitude of negative charge on Cl atom and shorter C—Cl bond than cyclohexyl chloride due to resonance therefore chlorobenzene has lower dipole moment than cyclohexyl chloride	
21	The C—Cl bond length in chlorobenzene is shorter than that in CH₃—Cl	Due to resonance C—Cl bond acquires a partial double bond character which is difficult to cleave.	
22	Chloroform is stored in closed dark brown bottles	Because chloroform is slowly oxidised by air in the presence of light to an extremely poisonous gas phosgene. COCl ₂	
23	Chlorobenzene is extremely less reactive	Due to repulsion between nucleophile and electron-rich	
24	towards a nucleophilic substitution reaction Alkyl halides on treatment with aq KOHforms alcohols but with alc KOH alkenes are produced, Why?	arenes and C-Cl bond has double bond character. An Aq KOH provides OH ⁻ where as alc KOH provides RO- (alkoxide) which is a stronger base than OH-, so it abstracts H ⁺ from $\beta - C$ of alkyl halide	

11. ALCOHOL, PHENOL AND ETHER				
Give Reason s for the following :				
	QUESTION- REASON ING	ANSWER- REASON		
1	Give Reason s for the following: p-nitrophenol is more acidic than p- methylphenol	Due to -I / -R effect of -NO ₂ group & +I / +R effect of - CH ₃ group or 4-nitrophenoxide ion is more stable than 4- methylphenoxide ion		
2	Bond length of C – O bond in phenol is shorter than that in methanol	Due to Resonance effect of – OH group in phenol		
3	Arrange in increasing order of boiling point C_2H_5 OH, $CH_3CH_2NH_2$, CH_3NHCH_3	CH_3 -NH-CH ₃ < CH_3 -CH ₂ -NH ₂ < C_2H_5 -OH.		
4	$(CH_3)_3C$ – Br on reaction with sodium methoxide (NaOCH ₃) gives alkene as the main product and not an ether	(CH3)3C–Br being a 3° halide prefers to undergo β – elimination on reacting with strong base like NaOCH ₃ .		
5	p-nitrophenol is more acidic than o- nitrophenol	Due to intramolecular H-bonding in o-nitrophenol it is weak acidic		
6	Bond angle C – O – C in ethers is slightly higher than the tetrahedral angle (109°28').	The mutual repulsion between bulky alkyl groups is stronger than the l.p-l.p electronic repulsions		
7	o-nitrophenol is more acidic than o- methoxyphenol	Because –NO2 is an electron withdrawing group		
8	Butan-1-ol has a higher boiling point than diethyl ether	Due to H-Bonding		
9	Phenol is more acidic than ethanol.	due to resonance in phenol, oxygen acquires positive charge and releases H+ ion easily whereas there is no resonance in CH ₃ CH ₂ OH OR (after releasing H+, phenoxide ion get stabilised by resonance)		
10	Boiling point of ethanol is higher in comparison to methoxymethane.	Because of hydrogen bonding in ethanol		
11	$(CH_3)_3C$ O CH ₃ on reaction with HI gives CH3OH and $(CH_3)_3C$ I as the main products and not $(CH_3)_3COH$ and CH3I	Because it follows S N1 path way which results in the formation of stable $(CH_3)_3C^+$.		
12	The C – O – H bond angle in alcohols is slightly less than the tetrahedral angle (109°28').	Due to lone pair- lone pair repulsion on oxygen		
13	o-and p-nitrophenols are more acidic than phenol	Due to –I effect or –R effect of –NO2 group		
14	Identify chiral in CH ₃ CH(OH)CH ₂ CH ₃ and CH ₃ CH(OH)CH ₃	$\begin{array}{cccc} H & H \\ & H \\ CH_3 - C^* - CH_2CH_3 & CH_3 - C - CH_3 \\ & \\ OH & OH \\ (Chiral) & (Non-chiral) \end{array}$		
15	Alcohols are more soluble in water than the hydrocarbons of comparable molecular masses	due to their ability to form hydrogen bonds with water molecules		
16	Of the two alcohols; (<i>a</i>) CH ₂ =CH—CH ₂ OH and (<i>b</i>) CH ₂ =CH—CH ₂ —CH ₂ OH, which one will react more easily with conc. HCl in the presence of ZnCl ₂ ?	$CH_2 = CH - CH_2OH$		
17	O-nitrophenol is steam volatile whereas p- nitrophenol is not	p-nitro phenol has intermolecular H-bond while o-nitro phenol has intramolecular H-bond.		

18	In Phenol, the –OH group activates the benzene ring towards elecrophilic substitution and directs the substituents to Ortho and para positions in benzene ring	Because the OH group attached to the benzene ring activates it towards electrophilic substitution. Also, it directs the incoming group to <i>ortho</i> and <i>para</i> positions in the ring as these positions become electron rich due to the resonance effect caused by –OH group.(also draw the resonating structures of phenol)	
19	In alcohols the boiling point decreases with increase in branching.	because of decrease in vander Waals forces with decrease in surface area	
20	Although phenoxide ion has more number of resonating structures than carboxylate ion, carboxylic acid is a stronger acid than phenol.	Carbonyl group of carboxylate ion is stronger electron withdrawing group than phenyl group of phenoxide ion	
	12. ALDEHYDES KETON	NES AND CARBOXYLIC ACIDS	
Giv	e Reason s for the following :		
1	QUESTION-REASONING	ANSWER- REASON	
1	Arrange the following compounds in increasing order of their property as indicated -CH ₃ COCH ₃ , C ₆ H ₅ COC ₆ H ₅ , CH ₃ CHO (reactivity towards nucleophilic addition reaction)	C ₆ H ₅ CO C ₆ H ₅ < CH ₃ COCH ₃ < CH ₃ CHO	
2	CI-CH-COOH, CI-CH ₂ -COOH, CCl ₃ -COOH (acidic character) 	$CI - CH_2 - COOH < CI_2CH - COOH < CCI_3 - COOH$	
3	(i) CH ₃ CHO, C ₆ H ₅ CHO, HCHO (manificity towards susleaphilic addition position)	$C_6H_5CHO < CH_3CHO < HCHO$	
4	(reactivity towards nucleophilic addition reaction) 2,4-dinitrobenzoic acid, 4-methoxybenzoic acid, 4-nitrobenzoic acid	A CRAME THE THE ASSET OF THE AMENT AND THE AND THE ASSET	
4	2,4-dimerobenzoic acid, 4-methoxybenzoic acid, 4-methobenzoic acid (acidic character)	4 - Methoxybenzoic acid < 4 - Nitrobenzoic acid < 2,4 - Dinitrobenzoic acid	
5	(ii)ClCH ₂ COOH, FCH ₂ COOH, CH ₃ COOH (acidic character)	CH ₃ COOH <cl-ch<sub>2-COOH < F-CH₂-COOH</cl-ch<sub>	
6	Arrange the following compounds in an increasing order of their acid strengths: (CH ₃) ₂ CHCOOH, CH ₃ CH ₂ CH(Br) COOH, CH ₃ CH(Br) CH ₂ COOH	$(CH_3)_2 CHCOOH < CH_3 - CH - CH_2 - COOH < CH_3 - CH_2 - CH - COOH$ Br Br Br Br	
7	Aldehydes are more reactive than ketones towards nucleophilic addition	due to steric hindrance of alkyl group due to +I effect of alkyl group +ve charge of carbonyl carbon decreases.	
8	The boiling points of aldehydes and ketones are lower than of the corresponding acids	due to intermolecular hydrogen bonding in carboxylic acids	
9	The aldehydes and ketones undergo nucleophilic addition reactions	Due to greater electronegativity of oxygen than carbon the C atom of the $>^{C=0}$ bond acquires a partial positive charge in aldehydes and ketones and hence readily undergo nucleophilic addition reactions	
10	Monochloroethanoic acid has a higher <i>pKa</i> value than dichloroethanoic acid.	Because of two -I group in dichloroethanoic acid, it is a stronger acid than monochloroethanoic acid	
11	Ethanoic acid is a weaker acid than benzoic acid	because methyl group due to its positive inductive effect destabilize the acetate anion by intensifying the negative charge.	
12	Why are lower members of aldehydes easily miscible with water?	Lower member of aldehydes are able to form intermolecular hydrogen bonds with water molecules. Hence, they are easily miscible with water	
13	Arrange the following compounds in an increasing order of their indicated property: (<i>i</i>) Benzoic acid, 4-Nitrobenzoic acid, 3,4- Dinitrobenzoic acid, 4-Methoxybenzoic acid (acid strength)	 (i) Acid strength: 4-Methoxy benzoic acid <benzoic acid<="" li=""> < 4-Nitrobenzoic acid < 3, 4-Dinitrobenzoic acid. </benzoic>	

14	(<i>ii</i>) CH ₃ CH ₂ CH(Br)COOH, CH ₃ CH(Br) CH ₂ COOH, (CH ₃) ₂ CHCOOH, CH ₃ CH ₂ CH ₂ COOH (acid strength)	(<i>ii</i>) Acid strength: (CH ₃) ₂ CHCOOH < CH ₃ CH ₂ CH ₂ COOH < CH ₃ CH(Br)CH ₂ COOH < CH ₃ CH ₂ CH(Br)COOH	
15	What is Tollen's reagent? Write one usefulness of this reagent	A solution of AgNO3 dissolved in NH4OH is known as Tollen's reagent. This is used to detect the presence of -CHO group in an organic compound. For example: RCHO + 2Ag (NH ₃) ₂ OH \rightarrow RCOONH ₄ + 2Ag ⁻ + H ₂ O + 3NH ₃ .	
16	Arrange the following compounds in increasing order of their reactivity in nucleophilic addition reactions: ethanal, propanal, propanone, butanone	Butanone < Propanone < Propanal < Ethanal	
17	Cyclohexanone forms cyanohydrin in good yield but 2, 4, 6-trimethylcyclohexanone does not.	Due to presence of three methyl groups, the nucleophilic attack by CN- ion does not occur due to steric hindrance in 2, 4, 6-trimethyl cylcohexanone. As there is no such steric hindrance in cyclohexanone so nucleophilic attack by the CN- ion occurs readily and hence cyclo hexanone cyanohydrin is obtained in good yield	
18	Acetaldehyde, Acetone, Methyl tert-butyl ketone (reactivity towards HCN)	Methyl tert-butyl ketone < Acetone < Acetaldehyde	
19	Benzoic acid, 3,4-Dinitrobenzoic acid, 4- Methoxybenzoic acid (acid strength)	4-Methoxy benzoic acid < Benzoic acid < 3,4- Dinitrobenzoic acid	
20	CH3CH2CH(Br)COOH, CH3CH(Br)CH2COOH, (CH3)2CHCOOH (acid strength)	(CH3)2CHCOOH < CH3CH(Br)CH2COOH < CH3CH2CH(Br)COOH	
21	Ethanal is more reactive than acetone towards nucleophilic addition reaction	due to steric hinderence of alkyl group OR due to +I effect of alkyl group +ve charge of carbonyl carbon decreases.	
22	(CH ₃) ₃ C—CHO does not undergo aldol condensation	\propto -hydrogen is not present in (CH ₃) ₃ C—CHO	
23	There are two – NH_2 group in semi carbazide however only one is involved in the formation of semicarbazones.	Since the NH ₂ group attached to carbonyl group is stabilized by resonance and has double bondcharacter	
24	It is necessary to control the pH during the reaction of aldehydes and ketones with ammoniaderivatives.	In weakly acidic medium protonation of carbonyl carbon is required, in case of strongly acidic medium, protonation of ammonia derivative will be also takes place and will not be able to act as a nucleophile	
25	Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal.	The carbon atom of the carbonyl group of benzaldehyde is less electrophilic than carbon atom of thecarbonyl group present in propanal. The polarity of the carbonyl group is reduced in benzaldehyde due to resonance as shown below and hence it is less reactive than propanal	
26	Formaldehyde does not take part in Aldol condensation.	Due to absence of \propto -hydrogen atom	
27	Carboxylic acids are higher boiling liquids than alcohols	due to more extensive association of carboxylic acid molecules through intermolecular hydrogen bonding	

	13. AMINES AND DIAZONIUM SALT		
Give	Give Reason s for the following :		
	QUESTION- REASON ING	ANSWER- REASON	
1	Arrange the following in increasing order of basic strength	$C_6H_5-NH_2 < C_6H_5-NH-CH_3 < CH_3-CH_2-NH_2$	
	C ₆ H ₅ NH ₂ , CH ₃ CH ₂ NH ₂ , C ₆ H ₅ NHCH ₃		

2	In increasing order of solubility in water CH3NH2, (CH3)3N, CH3NHCH3	$(CH_3)_3N < CH_3 NHCH_3 < CH_3NH_2$	
3	p-methylaniline is more basic than p- nitroaniline	$-CH_3$ group shows +I – effect (electron releasing group) whereas $-NO_2$ group shows $-I$ - Effect (electron withdrawing group)	
4	Acetylation of – NH ₂ group is done in aniline before preparing its ortho and para compounds.	To reduce activating effect of –NH2 group.	
5	Arrange in order of basic strength. (ii) H_2 H_2 H_2 H_2 (iii) O , O	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
6	<i>pKb</i> for aniline is more than that for methylamine	In aniline due to resonance the lone pair of electrons on the nitrogen atom are delocalized over the benzene ring. As a result, the electron density on the nitrogen decreases. On the other hand, in methyl amine +I effect of CH_3 increases the electron density on the nitrogen atom. Therefore aniline is a weaker base than methyl amine and hence its <i>pKb</i> value is higher than that of methyl amine	
7	Methylamine solution in water reacts with ferric chloride solution to give a precipitate of ferric hydroxide	$CH_3 - NH_2 + H_2O \implies CH_3 NH_3 + OH^-$ Due to alkaline nature of solution of methylamine precipitation of Fe(OH) ₃ o FeCl ₃ + 3OH ⁻ \longrightarrow Fe(OH) ₃ \downarrow + 3Cl ⁻ Ferric hydroxide (Brown ppt)	
8	Aniline does not undergo Friedel-Crafts reaction	Aniline being a Lewis base, reacts with lewis acid AlCl3 to form a salt. Due to this N atom of aniline acquires positive charge and hence acts as a strong deactivation group for further reaction.	
9	Why do amines behave as nucleophiles?	Due to the presence of a lone pair of electrons on nitrogen atom	
10	<i>pKb</i> of methylamine is less than that of aniline.	Lone pair of nitrogen in aniline invole in resonance, LP is not available for donation. On the other hand, in methyl amine +I effect of CH3 increases the electrondensity on the nitrogen atom. Therefore aniline is a weaker base than methyl amine and hence its <i>pKb</i> value is higher than that of methyl amine	
11	Ethylamine is freely soluble in water whereas aniline is only slightly soluble	because ethylamine forms hydrogen bonds with water, and due to hydrophobic benzene ring, aniline hence aniline is slightly soluble	
12	Why is an alkylamine more basic than ammonia?	Due to electron donating nature of alkyl group	
13	Arrange the following compounds in an increasing order of basic strengths in their aqueous solutions: NH ₃ , CH ₃ NH ₂ , (CH ₃) ₂ NH, (CH ₃) ₃ N	$NH_3 < (CH_3)_3N < CH_3 - NH_2 < (CH_3)_2 NH.$	
14	Arrange the following compounds in an increasing order of their basic strength in aqueous solutions: NH ₃ , C ₂ H ₅ NH ₂ , (C ₂ H ₅) ₂ NH, (C ₂ H ₅) ₃ N	NH ₃ < C ₂ H ₅ NH ₂ < (C ₂ H ₅) ₃ N < (C ₂ H ₅) ₂ NH	
15	In an increasing order of basic strength: $C_6H_5NH_2$, $C_6H_5N(CH_3)_2$, $(C_2H_5)_2$ NH and	In an increasing order of pKb values: C ₂ H ₅ NH ₂ , C ₆ H ₅ NHCH ₃ , (C ₂ H ₅) ₂ NHand C ₆ H ₅ NH ₂	

	CH ₃ NH ₂	
16	In a decreasing order of basic strength: Aniline, p-nitroaniline and p-toluidine	<i>p</i> -Toluidine > Aniline > tr-nitroaniline
17	In an increasing order of pKb values: $C_2H_5NH_2$, $C_6H_5NHCH_3$, (C_2H_5) $_2$ NH and $C_6H_5NH_2$	$(C_2H_5)_2 NH_2 < C_2H_5NH_2 < C_6H_5NHCH_3 < C_6H_5NH_2$
18	The order of basicity of amines in the gaseous phase follows the order: Tertiary amine > Secondary amine > Primary amine > NH ₃ .	Because the more the number ofElectron donating groups (EDG) i.e alkyl groups more is the basicity
19	Aromatic primary amines cannot be prepared by Gabriel phthalimide synthesis.	because inpreparation by Gabriel phthalimide synthesis, Ar-X is needed and aryl halides do not undergo nuleophilic substitution esily due to presence of partial double character
20	Although amino group is o– and p– directing in aromatic electrophilic substitution reactions, anilineon nitration gives a substantial amount of m-nitroaniline.	because Nitration is usually carried out with a mixture of conc HNO_3 and conc H_2SO_4 . In presence of these acids aniline gets protonated to form the anilinium ion which is <i>meta</i> directing
21	Acetylation of —NH ₂ group of aniline reduce its activating effect	Because withacetylation of aniline result in decrease of electron density on Nitrogen
22	NH ₂ group of aniline acetylated is before carrying out nitration.	Because the acetyl group reduces the reactivity of of the ring thus its oxidation does not occur easily with HNO_3 and mono substitution carried out.
23	Why are diazonium salts of aromatic amines more stable than those of aliphatic amines?	due to dispersal of the positive charge on the benzene ring.

. DISTINGUISH TEST

S.N	Test	Reagent	Inference
0	Lucas test :To distinguishbetween Primary (1 ⁰), Secondary (2 ⁰), & Tertiary (3 ⁰) Alcohols)	ZnCl2/HCl	(3 ⁰) Alcohols gives Turbidity (immediately), 2 ⁰ Turbidity after sometime (5-10 min) 1 ⁰ does not give Turbidity at room
2.	lodoform test (Alcohols containing CH₃-CH(OH)-linkage)	I2/NaOH	temperture Yellow Ppt of CHI ₃ .is formed
3.	Neutral ferric chloridetest (Phenol)	Neutral FeCl ₃	Phenols give Violet colouration
4.	Tollens test [Aliphatic Aldehydes(e.g.Ethanal,Pro panal etc) & Aromatic Aldehydes (Benzaldehyde etc.)]	Ammoniacal .AgNO₃	Bright silver mirror [Ag] is produced dueto the formation of silver metal.
5.	Fehling's test [OnlyAliphatic Aldehydes] **Aromatic aldehyde do not give this test	Fehling solution A(aqueous copper sulphate & Fehling solution B alkalinesodium potassium tartarate(Rochelle salt)	Reddish brown precipitate of [Cu ₂ O] isobtained.
6.	Iodoform test (Aldehydes & Ketones containing –COCH₃ linkage)	I2/NaOH	Yellow Ppt of CHI ₃ .is formed

7.	Sodium bicarbonate test (Aliphatic & AromaticCarboxylic acids)	NaHCO₃ Sodium Hydrogencarbonate	Effervescence due to evolution of CO ₂ gas.
8.	Isocyanide test Primary Aliphatic & Aromatic amines.	Chloroform(CHCl3) + Alcoholic KOH	Unpleasent odur (foul smelling) of isocyanides or carbylamines .
9.	Heinsberg test(To distinguish between (1º), (2º), & (3º) Amines.	Benzenesulphonyl chloride C6H5SO2Cl	Product of 1° Amines soluble in alkali. Product of 2° Amines are insoluble in alkali 3° amines do not react.
10.	Azo dye test(Aniline)	(NaNO2 + HCl)[Nitrous acid] followed by reaction with napthol	Reaction with NaNO2 + HCl at 273-278 K gives BDC which forms a brilliant orange Azo dye with β- napthol in sodium hydroxide
11.	Test for Methanoic acid (Formic acid) Tollens test & Fehling's test	Amm . AgNO3 & Fehling solution A&B	Bright silver mirror [Ag] is produced due to the formation of silver metal Reddish brown precipitate of [Cu2O] is obtained.

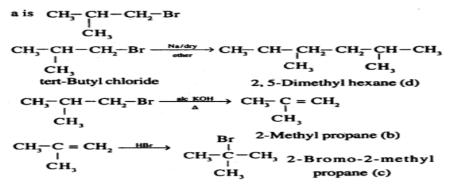
1)	ETHYL BROMIDE AND BROM BENZENE :- $AgNO_3 TEST$ C ₂ H ₅ Br + KOH(aq) <u>C</u> ₂ H ₅ OH + K ⁺ Br ⁻
	K ⁺ Br [−] + AgNO ₃ AgBr (Yellow PPT) + KNO ₃
	C ₆ H ₅ Br + KOH
2)	p-ClC ₆ H ₄ CH ₃ AND C ₆ H ₅ CH ₂ Cl :- <u>AgNO₃ TEST</u> C ₆ H ₅ CH ₂ Cl + KOH(aq) <u>C₆H₅CH₂ OH + KCl</u>
	KCI +AgNO ₃ AgCl (WHITE ppt) + KNO ₃
3)	$CCl_4 AND CHCl_3 :- \underline{CARBYLAMINE TEST}$ $CHCl_3 + C_6H_5NH_2 + KOH \longrightarrow C_6H_5NC + KCl + H_2O$
	$CCI_4 + C_6H_5NH_2 + KOH$ ———NO REACTION
4)	CH_3OH AND CH_3CH_2OH OR CH_3CH_2OH AND CH_3CH_2OH $: IODOFORM$ $TEST$ CH_3CH_2OH $+NaOI$ $$
	CH ₃ CHO +NaOIGHI ₃ (YELLOW ppt) +HCOONa +NaOH
	CH ₃ OH +NaOI NO REACTION
	OR CH ₃ CH ₂ CH ₂ OH +NaOIO REACTION
5)	CH3CH2OH AND CH3CH(OH)CH3 :- LUCAS TESTCH3CH(OH)CH3 + Anhy. ZnCl2 + Con. HCl-CH3CH2CICH3(WHITE TURBIDITY AFTER 5 MINS.)
	CH ₃ CH ₂ OH+ Anhy. ZnCl ₂ +Con. HCl
6)	$CH_{3}CH_{2}CH_{2}OH AND CH_{3}CHOHCH_{3} :- \underline{IODOFORM TEST}$ $CH_{3}CHOHCH_{3} + NaOI$
	CH ₃ COCH ₃ +NaOI ————————————————————————————————————
	CH ₃ CH ₂ CH ₂ OH + NaOI NO REACTION

7)	$\begin{array}{l} CH_3CHOHCH_2CH_3 \ AND \ (CH_3)_3COH :- \ \underline{Ll}\\ CH_3CH(OH)CH_2CH_3 \ + \ Anhy. \ ZnCl_2 + Con. \ HCl \end{array}$	<u>UCAS TEST OR IODOFORM TEST</u> ————————————————————————————————————	(CH₃)₃COH +
	Anhy. ZnCl ₂ +Con. HCl	CH ₃) ₃ CCI (whiteturbidity immediatelly)	
8)	$\begin{array}{l} CH_3CH_2OH \ AND \ C_6H_5OH \ :- \ \underline{FeCl_3TEST} \\ \textbf{C_6H_5OH} \ + \ FeCl_3 \end{array}$	$(C_{f}H_{5}O)_{3}Fe$ (VIOLET COLOURATION) + HCl	
	CH ₃ CH ₂ OH +FeCl ₃	NO REACTION	
9)	(R)2NH AND RNH2 :- (CARBYLAMINE 7 R-NH2 + CHCl3 +3KOH	TEST) — RANC +3KCl+3H2O offensive smell of isocyanide	
	(R) ₂ NH ₂ + CHCl3 +3KOH	NO REACTION	
10)	<u>C₂H₅OH AND CH₃CH₂NH₂ :- (IODOFORM</u> CH₃CH₂OH +NaOI	<u>ITEST)</u> → CH₃CHO + NaI +H₂O	
	CH₃CHO +NaOI	► CHI ₃ (YELLOW ppt) +HCOONa +NaOH	
11)	CH ₃ COCH ₂ CH ₂ CH ₃ AND CH ₃ CH ₃ COCH ₂ CH ₃ COCH ₂ CH ₂ CH ₃ +NaOI	CH ₃ :- (IODOFORM TEST) ————————————————————————————————————	
	CH ₃ CH ₃ COCH ₂ CH ₃		
12)	$C_6H_5COCH_3$ AND C_6H_5CHO :- (IODOFOR $C_6H_5COCH_3$ + NaOI	RM TEST) ——≨HI₃ (YELLOW ppt) +C₀H₅COONa +NaOH	
	C ₆ H ₅ CHO + NaOI →N	O REACTION	
13)	CH ₃ CHO AND CH ₃ CH ₂ CHO :- (IODOFO CH ₃ CHO +NaOI	RM TEST) CHl _e (YELLOW ppt)+HCOONa +NaOH	
	CH ₃ CH ₂ CHO –	NO REACTION	
14)	CH₃CHO AND C6H₅CHO :- (IODOFORM CH₃CHO +NaOI	TEST)	
	C ₆ H₅CHO ——	► NO REACTION	
15)	$C_6H_5CHO AND CH_3COCH_3 :- (IODOFOF CH_3COCH_3 + NaOI)$	CMTEST) GHI ₃ (YELLOW ppt)+CH ₃ COONa +NaOH	
	C ₆ H₅CHO	NO REACTION	
16)	$CH_3COC_6H_5$ AND $C_6H_5COC_6H_5$:- (IODO $C_6H_5COCH_3$ + NaOI	FORM TEST) CHI ₃ (YELLOW ppt) +C ₆ H ₅ COONa +NaOH	
	$C_6H_5COC_6H_5$	→ NO REACTION	
17)	CH ₃ COCH ₃ AND CH ₃ CH ₂ CHO :- (IODOF CH ₃ COCH ₃ +NaOI	FORM TEST) GHI₃ (YELLOW ppt) +CH₃COONa +NaOH	
	CH ₃ CH ₂ CHO	NO REACTION (TOLLENS TEST IS ALSO POSSIBLE)	
18)	CH₃CHO AND HCHO :- (IODOFORM TE CH₃CHO +NaOI	EST) CHJ ₃ (YELLOWppt)+HCOONa +NaOH	
	НСНО	NO REACTION	
19)	C ₂ H ₅ Cl AND CH ₂ =CHCl :- (AgNO ₃ TEST C ₂ H ₅ Cl + KOH (aq)+ AgNO ₃) C ₂ H ₅ OH + AgCl (WHITE ppt) + KNO ₃	
	CH ₂ =CHCI	NO REACTION	
20)	$C_6H_5Cl AND C_6H_{11}Cl :- (AgNO_3 TEST)$ $C_6H_{11} Cl + KOH (aq) + AgNO_3$		
	C ₆ H ₅ Cl	→ NO REACTION	

21)	$C_6H_5Cl AND C_6H_5CH_2Cl :- (AgNO_3TEST)$ $C_6H_5CH_2 Cl + KOH (aq) + AgNO_3$	
	C₀H₅Cl	NO REACTION
22)	CH ₃ CH ₂ CH ₂ OH AND CH ₃ COCH ₃ :- (IODOF CH ₃ COCH ₃ +NaOI	ORM TEST) →CHI₃ (YELLOW ppt) +CH₃COONa +NaOH
	CH ₃ CH ₂ CH ₂ OH	
23)	C ₆ H ₅ CH ₂ OH AND CH ₃ CHOHCH ₃ :-(IODOF(CH ₃ CHOHCH ₃ +NaOI	$ORM TEST) \longrightarrow CH_3COCH_3 + Nal + H_2O$
	CH ₃ COCH ₃ +NaOI	← CHI ₃ +CH ₃ COONa +NaOH
	C ₆ H ₅ CH ₂ OH	NO REACTION
24)	$CH_3OH AND C_6H_5OH :- (FeCl_3 TEST)$ $C_6H_5OH + FeCl_3$	(C₀H₅O)₃Fe (VIOLET COLOURATION) + HCl
	CH₃OH ———————————————————————————————————	O REACTION
25)	$C_6H_5OH AND C_6H_5NH_2 :- (AZO DYE TEST)$ $C_6H5N_2^+ Cl^- + C_6H_5OH+OH^-$	← $C_6H_5N=NC_6H_4OH$ (ORANGE DYE) + CI^2 + H_2O
	$C_6H5N_2^+ Cl^- + C_6H_5NH_2 + H^+$	$C_6H_5N=NC_6H_4NH_2$ (YELLOW DYE) + CI- +H ₂ O
26)	$C_6H_5NH_2$ AND C_6H_5NH CH ₃ (CARBYLAMINE T C ₆ H ₅ -NH ₂ + CHCl ₃ +3KOH C ₆ H ₅ NHCH ₃ +CHCl ₃ +3KOH	EST) → R-NC (FOUL SMELL) +3KCI +3H ₂ O → NO REACTION
27)	<u>C₂H₅NH₂ AND (C₂H₅)₂NH (</u> HINSBERG TEST)	
,	$C_6H_5SO_2CI + NH_2C_2H_5$	$_{6}H_{5}SO_{2}NH-C_{2}H_{5}$ (soluble in Alkali) + HCl
	$C_6H_5SO_2CI + NH(C_2H_5)_2$	$\underline{C_6H_5SO_2N}$ -(C ₂ H ₅) ₂ (INSOLUBLE IN ALKALI)+ HCl
M		

4. WORD PROBLEM 10. HALOALKANES AND HALOARENES

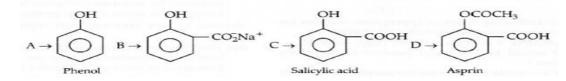
 An organic compound 'A' having molecular formula C₄ H₈ on treatment with dil. H₂SO4 give another compound 'B'. B on treatment with conc. HCl and anhy. ZnCl₂ gives 'C'. C on treatment with sodium ethoxide gives back 'A'. Identify the compound. Write the equations involved.


2. A primary alkyl halide (A), C₄H₉Br reacted with hot alcoholic KOH to give compound (B). Compound (B) reacted with HBr to give (C), which is an isomer of (A). When (A) was reacted with sodium metal, it gave a compound (D), C₈ H₁₈ which was different than the compound when n-butyl bromide was reacted with sodium. Give the structural formula of (A) and write equations of all the reactions.

There are two primary alkyl halides having the formula $\rm C_4H_9Br.$ They one n-butyl bromide and isobutyl bromide

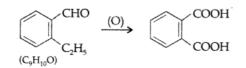
CH₃-CH₂- CH₂-CH₂-Br n-Butyl bromide CH₃-CH₂- CH₂-CH₂-Br

CH₃ isobutyl bromide


Since (a) reacts with Na to give a compound C_8H_{18} which is different from the compound formed when n – butyl bromide is reacted with Na, (a) has to be isobutyl bromide.

5. ALCOHOLS, PHENOLS AND ETHERS

 An organic compound (A) having molecular formula C₆H₆O gives a characteristic colour with aqueous FeCl₃ solution. (A) on treatment with CO₂ and NaOH at 400 K under pressure gives (B), which on acidification gives a compound (C). The compound (C) reacts with acetyl chloride to give (D) which is a popular pain killer. Identify compounds A, B, C and D.


4. A compound A with molecular formula C_3H_9O undergoes oxidation to form compound B. Compound B is widely used in nail polish removers and paint removers. When B is treated with CH_3MgBr it forms an intermediate and on hydrolysis it gives a compound C which is a 3° alcohol. Identify A, B and C and write their structures.

Ans: = A= Propan-2-ol B= Acetone C= 2-methylpropan-2-ol

12.Aldehydes, Ketones and Carboxylic Acids

5. An organic compound A contains 69.77% carbon, 11.63% hydrogen and rest oxygen. The molecular mass of the compound is 86. It does not reduce Tollen's Reagent but forms an addition compound with sodium hydrogen sulphite and gives positive iodoform test. On vigorous oxidation, it gives ethanoic acid and propanoic acids. Identify the structure of compound A.

Ans:

6. An organic compound with molecular formula $C_9H_{10}O$ forms 2,4-DNP derivative., reduces Tollen's reagent and undergoes Cannizzaro reaction. On vigorous oxidation, it gives 1,2-benzenedicarboxylic acid. Identify the compound.

(b) Calculation of Molecular formula :

C = 69.77%, ∴ O = 100 - (69.77				H = 11.63%		
		``````````````````````````````````````	Molar mass			

Element	%	Molar mass	%/Molar mass	Simplest ratio
С	69.77	12	5.88	5
Н	11.63	1	11.63	10
0	18.6	16	1.16	1

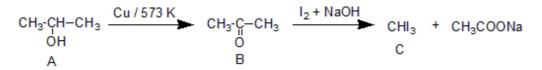
Empirical formula of given compound =  $C_5H_{10}O$ 

Empirical formula mass  $= 5 \times 12 + 10 \times 1 + 16 = 86$ 

n = 
$$\frac{\text{Empirical formula mass}}{\text{Molar mass}} = \frac{86}{86} = 1$$

÷

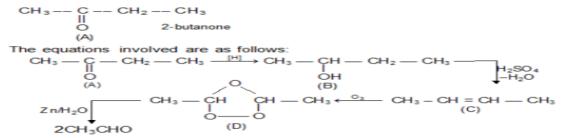
۰,


Molecular formula of the given compound=  $1 \times C_5 H_{10}O = C_5 H_{10}O$ 

Determination of structure : Since the compound does not reduce Tollen's reagent and gives positive iodoform test so it may be a ketone.

$$\begin{array}{c} \text{CH}_{3}\text{COCH}_{2}\text{CH}_{2}\text{CH}_{3} \xrightarrow{\text{K}_{2}\text{C}_{2}\text{C}_{2}} & \text{CH}_{3}\text{COOH} + \text{CH}_{3}\text{CH}_{2}\text{COOH} \\ \hline \text{2-Pentanone} & \text{Ethanoic acid} & \text{Propanoic acid} \end{array}$$

7. An organic compound  $A(C_3H_8O)$  on treatment with copper at 573 K gives B. B does not reduce Fehling's solution but gives a yellow ppt. of compound C with  $I_2$  / NaOH. Deduce the structures of A, B and C.


Ans: As B gives negative fehling's test means B is not an aldehyde. Copper at 573 K act as oxidising agent. Therefore, A is alcohol which gives ketone on oxidation. This ketone gives positive iodoform test. In positive iodoform test yellow precipitate of iodoform, CHI₃ are obtained. "C" is iodoform.



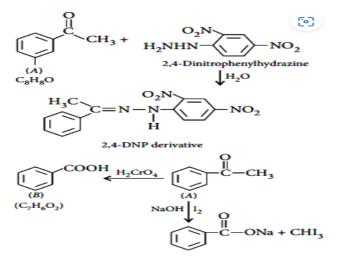
8. A ketone A ( $C_4H_8O$ ) which undergoes a haloform reaction and gives compound B on reduction. B on heating with sulphuric acid gives a compound C which forms mono-ozonide D. D on hydrolysis with zinc dust gives only E. Identify A, B, C, D and E. Write the reactions involved

$$CH_3CH=CHCH_3$$
  
The compound C is obtained by dehydration of B, thus the latter should be  
 $CH_3 - CH - CH_2 - CH_3$   
 $OH$  2-butanol  
(B)

Finally, B is obtained by the reduction of A. Hence, the compound A should be



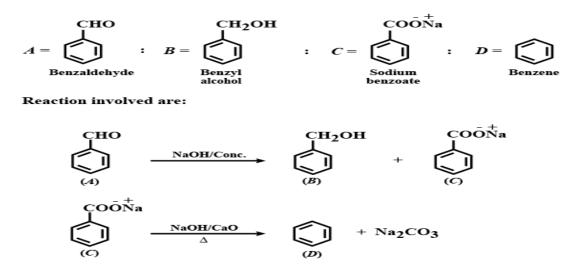
9. An organic compound A has the molecular formula C₈H₁₆O₂. It gets hydrolysed with dilute sulphuric acid and gives a carboxylic acid B and an alcohol C. Oxidation of C with chromic acid also produced B. C on dehydration reaction gives but-l-ene. Write equations for the reactions involved.


(b) The compound A with molecular formula is Butyl butanoate.

$$\begin{array}{cccc} CH_{3}-CH_{2}-CH_{2}-C&-OCH_{2}CH_{2}CH_{2}CH_{3} & \xrightarrow{\dim H_{2}SO_{4}}\\ Butyl butanoate & \parallel\\ A (C_{8}H_{16}O_{2}) & O \\ & CH_{3}CH_{2}CH_{2}COOH + CH_{3}CH_{2}CH_{2}CH_{2}OH \\ B (Butanoic acid) & C (Butanol) \\ CH_{3}CH_{2}CH_{2}CH_{2}OH & \xrightarrow{CrO_{3}}\\ C (Butanol) & B (Butanoic acid) \\ CH_{3}CH_{2}CH_{2}CH_{2}OH & \xrightarrow{Dehydration}\\ C (Butanol) & CH_{3}CH_{2}CH_{2}CH = CH_{2} \\ C (Butanol) & D (Butene) (But-1-ene) \end{array}$$

10. An organic compound A with molecular formula  $C_8H_8O$  forms an orange red precipitate with 2,4-DNP reagent and gives yellow precipitate on heating with I₂ and NaOH. It neither reduces Tollen's reagent nor Fehling's reagent nor does it decolourize bromine water or Baeyer's reagent. On drastic oxidation with chromic acid, it gives a carboxylic acid having molecular formula  $C_7H_6O_2$ . Identify the compounds A and B and explain the reactions involved.

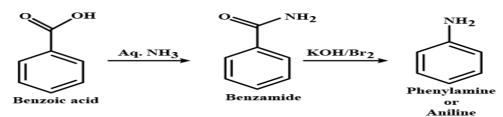
(A) forms, 2, 4-DNP derivative. Therefore, it is an aldehyde or a ketone. Since it does not reduce Tollen's or Fehling reagent, (A) must be a ketone. (A) responds to iodoform test.


Compound (B), being an oxidation product of a ketone should be a carboxylic acid. The molecular formula of (B) indicates that it should be benzoic acid and compound (A) should, therefore, be a mono-substituted aromatic methyl ketone.

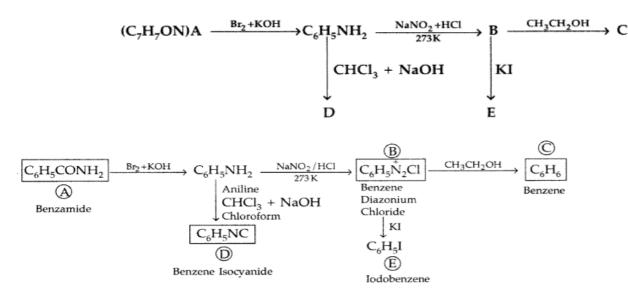


11. An organic compound A which has characteristic odour, on treatment with NaOH forms two compounds B and C. Compound B has the molecular formula  $C_7H_8O$  which on oxidation with  $CrO_3$  gives back compound A. Compound C is the sodium salt of the acid. C when heated with soda lime yields an aromatic hydrocarbon D. Deduce the structures of A, B, C and D.

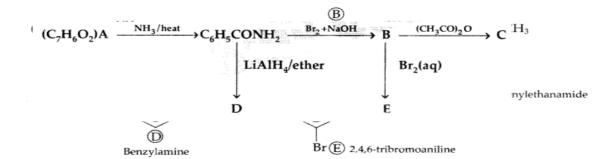
Ans: (A) gives characteristic odour which on treatment with NaOH and forms two compounds


ANS:




#### **13. AMINES**

12. An aromatic compound A on treatment with aqueous ammonia and heating forms compound B which on heating with  $Br_2$  and KOH forms a compound C of molecular formula  $C_6H_7N$ . Write the structure and IUPAC names of compounds A, B and C.


ANS: The aromatic compound A is benzoic acid. On treatment with aqueous ammonia and heating forms compound B, which is benzamide. Benzamide on heating with bromine and KOH forms a compound C, which is aniline. The reaction is called Hoffmann bromamide degradation.



13. An aromatic compound A of molecular formula  $C_7H_{27}ON$  undergoes a series of reactions as shown below. Write the structures of A, B, C, D and E in the following reactions :



14. An aromatic compound A of molecular formula C₇H₆O₃ undergoes a series of reactions as shown below. Write



# **KEY FOR CONVERSIONS**

			1	
SI No	Reagent	Group Out	Group In	Remark
1	KMnO₄ / H+	-CH2OH	-COOH	Strong Oxidation (2 ⁰ alc→ ketone)
2	LiAlH4	-COOH	-CH2OH	Strong Reduction (ketone $\rightarrow 2^{\circ}$ alc)
3	Cu /573 K or CrO₃	-CH2OH	-CHO	Dehydrogenation
4	PCl₅ or SOCl₂	-OH	-Cl	
5	$Cl_2 / \Delta$ or $Cl_2 / UV$	-Н	-Cl	Free radical substitution
6	Aq NaOH / KOH	-X	-OH	Nucleophilic substitution
7	KCN	-X	-CN	Step Up
8	AgCN	-X	-NC	
9	Alcoholic KOH	-HX	=	Dehydrohalogenation (Stzf)
10	Mg / dry ether		Mg	$R-X \rightarrow R-MgX$
11	HBr	>=<	H, Br	Merkovnikov
12	H ₂ / Pd-BaSO ₄	-COCI	-CHO	Rosenmund Reduction
13	Zn-Hg / HCl	>C=0	-CH2-	Clemmension Reduction
14	NH3 / Δ	-COOH	-CONH ₂	-COOH + NH ₃ → -COONH ₄
15	Br ₂ /NaOH or NaOBr	-CONH ₂	-NH ₂	Step Down (Hoffmann)
16	HNO ₂ orNaNO ₂ /HCl	-NH2	-OH	HONO
17	CHCl₃ / alc KOH	-NH2	-NC	Carbyl amine
18	P ₂ O ₅	-CONH ₂	-CN	Dehydration
19	H₃O⁺	-CN	-COOH	Hydrolysis
20	OH ⁻	-CN	-CONH ₂	
21	LiAlH4	-CN	-CH ₂ NH ₂	Reduction
22	Red P / Cl ₂	α-H of acid	-Cl	HVZ Reaction
	In benzene ring			
23	Fe / X ₂ /dark	-H	-X	Halogination
24	CH₃Cl / AlCl₃(anhyd)	-Н	-CH₃	Friedel Craft alkylation
25	CH ₃ COCI /	-Н	-COCH₃	Friedel Craft acylation
	AlCl₃(anhyd)			
26	Conc.HNO₃/con.H₂SO₄	-Н	-NO2	Nitration
27	Conc H ₂ SO ₄	-Н	-SO₃H	Sulphonation
28	KMnO₄ / H+	-R	-COOH	Oxidation
29	CrO2Cl2 / H+	-CH₃	-CHO	Mild oxidation(Etard Reaction)
30	Sn / HCl or Fe/HCl	-NO2	-NH2	Reduction
31	NaOH / 623K / 300	-Cl	-OH	
	atm			
32	Zn dust / Δ	-OH	-Н	
33	NaNO2 / dil HCl / 273- 278 K	-NH2	-N ⁺ Cl ⁻ 2	Diazo reaction
34	CuCl/HCl or Cu/HCl	-N ⁺CI⁻	-Cl	Sandmeyer or Gattermann
35	CuBr/HBr orCu/HBr	-N ⁺CI⁻	-Br	Sandmeyer or Gattermann
36	CuCN / KCN	-N ⁺CI⁻	-CN	Sandmeyer
37	ĸı	-N ⁺CI	-1	
38	HBF4 / Δ	-N ⁺CI⁻	-F	
39	H ₃ PO ₂ or CH ₃ CH ₂ OH	-N ⁺ Cl ⁻	-Н	
40	H₂O / 283 K	-N ⁺ <u></u> CI⁻	-OH	
41	HBF₄/ NaNO₂ ,Cu/ Δ	-N ⁺ ₂ Cl ⁻	-NO2	
42	C₀H₅-OH	-N ⁺ Cl ⁻ 2	-N=N-	Coupling ( p-hydroxy)
			C₀H₅-OH	
43	C6H5-NH2	-N ⁺ Cl ⁻ 2	-N=N-	Coupling ( p-amino)
			C ₆ H ₅ -NH ₂	
41 42	HBF₄/ NaNO₂ ,Cu/ Δ C₀H₅-OH	-N ⁺ Cl ⁻ -N ⁺ Cl ⁻ 2	-NO2 -N=N- C6H5-OH -N=N-	

### **Reactions of Grignard Reagent**

Grignard reagent +	Any one below + H ₂ O	$\rightarrow$	Product
	H ₂ O or ROH or RNH ₂		R-H
	Н-СНО		R-CH ₂ -OH (1 ⁰ alc)
	R-CHO		R-CH(OH)-R (2 ⁰ alc)
	R-CO-R		R₂C(OH)-R (3º alc)

R-MgX	CO ₂	R-COOH
	R-CN	R-CO-R
	HCOOR	Aldehyde
	RCOOR	Ketone

Directional Properties of groups in benzene ring for electrophilic substitution

Ortho-para directing group: -R, -OH, -NH₂, -X, -OR, -NHR, -NR₂, -NHCOCH₃, -CH₂Cl, -SH,- Ph Meta-directing group: -NO₂, -CHO, -COOH, COOR, -CN, -SO₃H, -CH₃, -CCl₃, - NH₃⁺,

## BIOMOLECULES

Carbohvdrates are	classified on the basis of their behavior on hydrolysis :
Monosaccharides:	A carbohydrate that cannot be hydrolyzed further to give simpler unit of polyhydroxy aldehyde or ketone is called a monosaccharide. examples are glucose, fructose, ribose, etc.
Oligosaccharides:	Carbohydrates that yield two to ten monosaccharide units, on hydrolysis, are called oligosaccharides. They are further classified as disaccharides, trisaccharides, tetra saccharides, etc., depending upon the number of monosaccharides, they provide on hydrolysis. For example, sucrose on hydrolysis gives one molecule each of glucose and fructose.
Polysaccharides:	Carbohydrates which yield a large number of monosaccharide units on hydrolysis are called polysaccharides. Some common examples are starch, cellulose, glycogen, gums, etc. Polysaccharides are not sweet in taste, hence they are also called non-sugars.
Reducing sugars:	All those carbohydrates which reduce Fehling's solution and Tollens' reagent are referred to as reducing sugars. Examples: All monosaccharides, Maltose and Lactose.
Non-reducing sugars:	In disaccharides, if the reducing groups of monosaccharides i.e., aldehydes or ketone groups are bonded, these are non-reducing sugars e.g. All polysaccharides sucrose
Anomers:	a & $\beta$ - Glucose , which differ in the orientation of – OH group at $C_{_1}.$
Proteins:	proteins are polymer of a- amino acids ,joined by peptide bonds . They also known as polyamides.
Types of Proteins:	<ul> <li>(i) Fibrous proteins:- The polypeptide chains run parallel and are held by H-bond or disulphide linkage , Insoluble in water Eg : Keratin ,Myocin</li> </ul>
	<ul> <li>(ii) Globular proteins:- Polypeptides coil around to give a spherical shape, Soluble in water Eg : Insulin ,Albumins</li> </ul>
Structure and shape of Proteins:	<ol> <li>Primary structure : It is a specific sequence of amino acids</li> <li>Secondary structure: It represent shape ie. a - halix and β-pleated sheet.</li> <li>a - halix : polypeptide chain twisted in to a right handed screw by forming H-bonds b/w NH group and &gt;C=O grup.</li> <li>β- pleated sheet : peptide chains laid side by side and held together by H-bonds</li> <li>Tertiary structure: It represent further folding of the secondary structure. It gives rise to two major molecular shapes viz. fibrous and globular.</li> <li>Quaternary structure of proteins: composed of two or more polypeptide chains referred to as sub-units. The spatial arrangement</li> </ol>
	of these subunits with respect to each other.

Nucleic acids	Polymer of nucleotides linked by phosphodiester linkage -3' 5' linkage		
Nucleotide	Each nucleotide contains N-base, Sugar and Phosphate.		
Nucleoside	Contains N-base & Sugar.		
Double helical	Two strand of DNA coiled around each other and held together		
structure of DNA	by H-bonds b/w pairs of bases. Such as $-C \equiv G^-$ , and $-A = T^-$		
Structure of DIA	Purines : A & G And Pyrimidines : C, U & T		
DNA			
DNA	N-Bases : A,G ,C &T, Double helix, Contains 2-deoxy ribose		
	sugar, Transfer heredity characters.		
RNA	N-Bases: A,G C & U, Single helix, Contains Ribose sugar, Helps		
	in proteins synthesis.		
Preparation of	(I) From Cane sugar: (Sucrose) :		
Glucose	When sucrose is hydrotysed by boiling with dil HCl or dil H ₂ SO ₄ in alcoholic solution		
	$C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^*} C_6H_{12}O_6 + C_6H_{12}O_6$		
	Sucrose Glucose Fractose		
	(II) From Starch :		
	Commercially Glucose is obtained by hydrolysis of starch by boiling it with dil H ₂ SO ₄ at 393 K		
	$(C_6H_{10}O_5)_n + nH_2O \xrightarrow{H^*} nC_6H_{12}O_6$		
	Starch Glucose		
Structure of			
Glucose	GLUCOSE (OPEN CHAIN / Cyclic STRUCTURE )		
Glucose			
	<b>CHO</b> $\leftarrow$ One aldehyde group $H \xrightarrow{1'}_{-1} OH H \xrightarrow{1'}_{-1} OH H \xrightarrow{1'}_{-1} OH$		
	$H \xrightarrow{2} OH = H $		
	$CH(OH)_4 \leftarrow Four 2^\circ alcoholic group \qquad HO \xrightarrow{\bullet} H \qquad HO$		
	$CH_2OH \leftarrow One 1^\circ Alcoholic group$ $H \xrightarrow{\circ}$ $H \xrightarrow{\circ}$ $H \xrightarrow{\circ}$ $OH$ $H \xrightarrow{\circ}$ $OH$ $H \xrightarrow{\circ}$ $6$		
	CH ₂ OH CH ₂ OH CH ₂ OH		
	$\mathbf{D}_{\mathbf{r}}(\mathbf{r}) = \mathbf{D}_{\mathbf{r}}(\mathbf{r}) \mathbf{D}_{\mathbf{r}}(\mathbf{r})$		
	$\alpha$ -D-(+)-Glucose $\beta$ -D-(+)-Glucose		
Reactions of			
Reactions of Glucose	$\xrightarrow{H_2 + \text{Red P} \ \Delta} CH_3(-CH_2)_4 - CH_3 \xrightarrow{\text{Proove 6 carbon in}} Straight chain$		
	$\begin{array}{c} \xrightarrow{H_{3} + \operatorname{Red} P, \ \Delta} & \operatorname{CH}_{3}(-\operatorname{CH}_{2})_{4} - \operatorname{CH}_{3} & \operatorname{Proove 6 \ carbon \ in}_{n \cdot hexane} \\ & \operatorname{CN} & \operatorname{straight \ chain}_{1} \end{array}$		
	$\begin{array}{c} H_2 + \operatorname{Red} P, \Delta \\ \hline Reduction \\ n - hexane \\ \hline CN \\ CH = OH \\ HCN \end{array}  CH_3(-CH_2)_4 - CH_3 \\ Proove 6 carbon in \\ straight chain \\ \hline Straight chain \\ \hline CH = OH \\ HCN  Fraight CH_2(-CH_2)_4 - CH_3 \\ \hline CH_2(-CH_2)_4 - CH_3 \\ Fraight chain \\ \hline Straight chain \\ \hline Strai$		
	$ \begin{array}{c} \xrightarrow{H_2 + \operatorname{Red} P. \ \Delta} & \operatorname{CH}_3(-\operatorname{CH}_2)_4 - \operatorname{CH}_3 & \operatorname{Proove 6 \ carbon \ in} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$		
	$\begin{array}{c} \xrightarrow{H_2 + \operatorname{Red} P, \ \Delta} & \operatorname{CH}_3(-\operatorname{CH}_2)_4 - \operatorname{CH}_3 & \operatorname{Proove 6 \ carbon \ in} \\ & \operatorname{Reduction} & \operatorname{straight \ chain} \\ & \operatorname{CN} & \\ & \operatorname{CH-OH} \\ & \operatorname{CH-OH} & \\ & \operatorname{HCN} &   \\ & \operatorname{CH-OH}_4 & \\ & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ &   \\ & \operatorname{CH_2OH} & \\ \end{array}$		
	$\begin{array}{c} \xrightarrow{H_2 + \operatorname{Red} P. \ \Delta} & \operatorname{CH}_3(-\operatorname{CH}_2)_4 - \operatorname{CH}_3 & \operatorname{Proove 6 \ carbon \ in} \\ & \operatorname{Reduction} & \operatorname{straight \ chain} \\ & \operatorname{CN} & \\ & \operatorname{CH} & \operatorname{CH} \\ & \operatorname{CH} - \operatorname{OH} & \\ & \operatorname{CH} - \operatorname{OH} & \\ & \operatorname{HCN} & 1 & \\ & \operatorname{CH} - \operatorname{OH} & \\ & \operatorname{CH} - \operatorname{CH} & \\ & \operatorname{CH} - \operatorname{OH} & \\ & \operatorname{CH} - \operatorname{CH} & \\ & \operatorname{CH} - \operatorname{CH} & \\ & \operatorname{CH} - \operatorname{CH} & \\ & \operatorname{CH} & \\ & \operatorname{CH} - \operatorname{CH} & \\ & \operatorname{CH} & \\ & \operatorname{CH} - \operatorname{CH} & \\ & \operatorname{CH} & \\ & \operatorname{CH} & \\ & \operatorname{CH} & \\ & \operatorname{CH} - \operatorname{CH} & \\ & $		
	$ \begin{array}{c} \xrightarrow{H_{3} + \operatorname{Red} P, \Delta} & \operatorname{CH}_{3}(-\operatorname{CH}_{2})_{4} - \operatorname{CH}_{3} & \operatorname{Proove 6 \ carbon \ in} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	$\begin{array}{c c} H_{2} + \operatorname{Red} P & \Delta & CH_{3}(-CH_{2})_{4} - CH_{3} & \operatorname{Proove 6 \ carbon \ in} \\ & \operatorname{Reduction} & \operatorname{straight \ chain} \\ & CN & \\ & & CH - OH \\ & &$		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	$\begin{array}{c c} H_{3} + \operatorname{Red} P & \Delta & \operatorname{CH}_{3}(-\operatorname{CH}_{2})_{4} - \operatorname{CH}_{3} & \operatorname{Proove 6 \ carbon \ in} \\ & \operatorname{straight \ chain} \\ & \operatorname{ch}^{Reduction} & \operatorname{ch}^{CH_{3}(-\operatorname{CH}_{2})_{4}} - \operatorname{CH}_{3} & \operatorname{Proove 6 \ carbon \ in} \\ & \operatorname{straight \ chain} \\ & \operatorname{ch}^{CH_{1}} & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{Proove \ one} - \operatorname{C=O \ Gp} \\ & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{ch}^{CH_{2}} & \operatorname{Proove \ one} - \operatorname{CHO \ Gp} \end{array}$		
	$\begin{array}{c c} H_{2} + \operatorname{Red} P & \Delta \\ Reduction \\ CH \\ C$		
	$\begin{array}{c c} \begin{array}{c} & \begin{array}{c} H_2 + \operatorname{Red} P, \Delta \\ \operatorname{Reduction} & CH_3(-CH_2)_4 - CH_3 \\ \operatorname{Reduction} & \operatorname{straight chain} \\ \end{array} \\ \begin{array}{c} CN \\ HCN \\ HCN \\ \end{array} \\ \begin{array}{c} CH \\ CH - OH \\ HCN \\ \end{array} \\ \begin{array}{c} CH \\ CH - OH \\ (CHOH)_4 \\ \end{array} \\ \begin{array}{c} CH \\ CH_2OH \\ \end{array} \\ \begin{array}{c} CH \\ HS \\ CH_2OH \\ \end{array} \\ \begin{array}{c} CH \\ CH \\ CH \\ CH \\ \end{array} \\ \begin{array}{c} CH \\ CH $		
	$\begin{array}{c c} \begin{array}{c} & \begin{array}{c} & \begin{array}{c} H_2 + \operatorname{Red} P, \Delta \\ \operatorname{Reduction} \end{array} & \operatorname{CH}_3(-\operatorname{CH}_2)_4 - \operatorname{CH}_3 \\ \end{array} & \begin{array}{c} \operatorname{Proove 6 \ carbon in} \\ & \operatorname{straight chain} \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \end{array} \\ \begin{array}{c} & \begin{array}{c} & \\ & \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \end{array} \\ \end{array} \\ \begin{array}{c} & \\ & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \begin{array}{c} & \\ & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & \end{array} \\ \begin{array}{c} & \end{array} \\ \end{array}$		
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} H_{2} + \operatorname{Red} P & \Delta \\ \operatorname{Reduction} & CH_{3}(-CH_{2})_{4} - CH_{3} \\ \operatorname{Reduction} & \operatorname{straight chain} \\ \end{array} \\ \begin{array}{c} CN \\ CH-OH \\ HCN \\ \end{array} \\ \begin{array}{c} CH \\ CH-OH \\ CH_{2}OH \end{array} \\ \begin{array}{c} CH \\ CH_{2}OH \\ \end{array} \\ \begin{array}{c} CH \\ CH_{2}OH \end{array} \\ \begin{array}{c} CH \\ CH_{2}OH \\ \end{array} \\ \begin{array}{c} COOH \\ CH_{2}OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} COOH \\ CH_{2}OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} COOH \\ CH_{2}OH \\ CH_{2}OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} COOH \\ CH_{2}OH \\ \end{array} \\ \begin{array}{c} COOH \\ CH_{2}OH \\ CH_{2}O$		
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} H_{2} + \operatorname{Red} P & \Delta \\ \operatorname{Reduction} \end{array} & \operatorname{CH}_{3}(-\operatorname{CH}_{2})_{4} - \operatorname{CH}_{3} \end{array} \begin{array}{c} \operatorname{Proove} 6 \text{ carbon in} \\ \operatorname{straight} chain \\ \end{array} \\ \begin{array}{c} \begin{array}{c} CN \\ \end{array} \\ \begin{array}{c} CH \\ \end{array} \\ \begin{array}{c} CO \\ \end{array} \\ \end{array} \\ \begin{array}{c} CO \\ \end{array} \\ \end{array} \\ \begin{array}{c} CO \\ \end{array} \\ \end{array} \\ \begin{array}{c} Proove one \\ \\ Proove one \\ \\ Proove one \\ \\ Proove one \\ Primary Alcohal Gp \\ \end{array} $		
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} H_{2} + \operatorname{Red} P & \Delta \\ \operatorname{Reduction} & CH_{3}(-CH_{2})_{4} - CH_{3} \\ \operatorname{Reduction} & \operatorname{straight chain} \\ \end{array} \\ \begin{array}{c} CN \\ CH-OH \\ HCN \\ \end{array} \\ \begin{array}{c} CH \\ CH-OH \\ CH_{2}OH \end{array} \\ \begin{array}{c} CH \\ CH_{2}OH \\ \end{array} \\ \begin{array}{c} CH \\ CH_{2}OH \end{array} \\ \begin{array}{c} CH \\ CH_{2}OH \\ \end{array} \\ \begin{array}{c} COOH \\ CH_{2}OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} COOH \\ CH_{2}OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} COOH \\ CH_{2}OH \\ CH_{2}OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} COOH \\ CH_{2}OH \\ \end{array} \\ \begin{array}{c} COOH \\ CH_{2}OH \\ CH_{2}O$		
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} H_{2}+\operatorname{Red}P,\Delta\\ \operatorname{Reduction} \end{array} \end{array} \\ \begin{array}{c} CH_{3}(-CH_{2})_{4}-CH_{3} \end{array} \\ \begin{array}{c} Proove \ 6 \ carbon \ in \\ straight \ chain \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{1}\\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{1}\\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \begin{array}{c} CH_{2}OH \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} $ \\ \\ \end{array}  \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array}  \\ \\ \\ \\		
Glucose	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} H_{2}+\operatorname{Red}P,\Delta\\ \operatorname{Reduction} \end{array} \end{array} \\ \begin{array}{c} CH_{3}(-CH_{2})_{4}-CH_{3} \end{array} \\ \begin{array}{c} Proove \ 6 \ carbon \ in \\ straight \ chain \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{1}\\ \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{1}\\ \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{1}\\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{1}\\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} Proove \ one \ -C=O \ Gp \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} Proove \ one \ -CHO \ Gp \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} Proove \ one \ -C=O \ Gp \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Proove \ one \ -CHO \ Gp \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Proove \ one \ -CHO \ Gp \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} Proove \ one \ -CHO \ Gp \end{array} \\ \\ \end{array} $ \\ \end{array}  \\ \begin{array}{c} CH_{2}OH \end{array} \\ \end{array}		
Glucose Reactions that	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} H_{4}+\operatorname{Red}P_{\cdot} \bigtriangleup \\ O \\ \operatorname{Reduction} \end{array} \\ \begin{array}{c} C \\ \operatorname{Reduction} \end{array} \\ \begin{array}{c} C \\ \operatorname{CH} \\ \operatorname{CO} \\ \operatorname{CO} \\ \operatorname{CH} \\ \operatorname{CO} \\ \operatorname{CO} \\ \operatorname{CH} \\ CH$		
Glucose Reactions that prove cyclic	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Glucose Reactions that prove cyclic structure of	$\begin{array}{ c c c c c } \hline & H_{3}+Red P. \land \\ \hline Reduction & CH_{3}(-CH_{2})_{4}-CH_{3} & Proove 6 carbon in \\ straight chain \\ \hline & Straight cha$		
Glucose Reactions that prove cyclic structure of	<ul> <li>Aldehyde group present but glucose does not react with NaHSO3&amp; NH3.</li> <li>Glucose does not give the Schiff's Test &amp; 2,4-DNP test for aldehyde.</li> <li>Glucose penta-acetate does not react hydroxyl amine, which shows that aldehyde group is absent in glucose.</li> </ul>		

Cyclic Structure of	Structure of Glucose	Structure of Fructose
Glucose	$ \begin{array}{c}  & & & & & \\  & & & & & \\  & & & & & \\  & & & &$	$HOH_2^6$ $H$
Structure of Nucleotide	deoxynucleotides. A O O O O O O O O	oxynucleotides. 0 0 0 0 0 0 0 0